ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrng2 Unicode version

Theorem iscrng2 13892
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
ringcl.b  |-  B  =  ( Base `  R
)
ringcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
iscrng2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\ 
A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
Distinct variable groups:    x, y, B   
x, R, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem iscrng2
StepHypRef Expression
1 elex 2788 . 2  |-  ( R  e.  CRing  ->  R  e.  _V )
2 elex 2788 . . 3  |-  ( R  e.  Ring  ->  R  e. 
_V )
32adantr 276 . 2  |-  ( ( R  e.  Ring  /\  A. x  e.  B  A. y  e.  B  (
x  .x.  y )  =  ( y  .x.  x ) )  ->  R  e.  _V )
4 eqid 2207 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
54iscrng 13880 . . 3  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd ) )
64ringmgp 13879 . . . . 5  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
7 eqid 2207 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
8 eqid 2207 . . . . . . . 8  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
97, 8iscmn 13744 . . . . . . 7  |-  ( (mulGrp `  R )  e. CMnd  <->  ( (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  (mulGrp `  R
) ) A. y  e.  ( Base `  (mulGrp `  R ) ) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
10 ringcl.b . . . . . . . . . 10  |-  B  =  ( Base `  R
)
114, 10mgpbasg 13803 . . . . . . . . 9  |-  ( R  e.  _V  ->  B  =  ( Base `  (mulGrp `  R ) ) )
12 ringcl.t . . . . . . . . . . . . 13  |-  .x.  =  ( .r `  R )
134, 12mgpplusgg 13801 . . . . . . . . . . . 12  |-  ( R  e.  _V  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1413oveqd 5984 . . . . . . . . . . 11  |-  ( R  e.  _V  ->  (
x  .x.  y )  =  ( x ( +g  `  (mulGrp `  R ) ) y ) )
1513oveqd 5984 . . . . . . . . . . 11  |-  ( R  e.  _V  ->  (
y  .x.  x )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) )
1614, 15eqeq12d 2222 . . . . . . . . . 10  |-  ( R  e.  _V  ->  (
( x  .x.  y
)  =  ( y 
.x.  x )  <->  ( x
( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
1711, 16raleqbidv 2721 . . . . . . . . 9  |-  ( R  e.  _V  ->  ( A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x )  <->  A. y  e.  ( Base `  (mulGrp `  R ) ) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
1811, 17raleqbidv 2721 . . . . . . . 8  |-  ( R  e.  _V  ->  ( A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) A. y  e.  ( Base `  (mulGrp `  R )
) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
1918anbi2d 464 . . . . . . 7  |-  ( R  e.  _V  ->  (
( (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  B  A. y  e.  B  (
x  .x.  y )  =  ( y  .x.  x ) )  <->  ( (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  (mulGrp `  R
) ) A. y  e.  ( Base `  (mulGrp `  R ) ) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) ) )
209, 19bitr4id 199 . . . . . 6  |-  ( R  e.  _V  ->  (
(mulGrp `  R )  e. CMnd  <-> 
( (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  B  A. y  e.  B  (
x  .x.  y )  =  ( y  .x.  x ) ) ) )
2120baibd 925 . . . . 5  |-  ( ( R  e.  _V  /\  (mulGrp `  R )  e. 
Mnd )  ->  (
(mulGrp `  R )  e. CMnd  <->  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
226, 21sylan2 286 . . . 4  |-  ( ( R  e.  _V  /\  R  e.  Ring )  -> 
( (mulGrp `  R
)  e. CMnd  <->  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
2322pm5.32da 452 . . 3  |-  ( R  e.  _V  ->  (
( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd )  <->  ( R  e. 
Ring  /\  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) ) )
245, 23bitrid 192 . 2  |-  ( R  e.  _V  ->  ( R  e.  CRing  <->  ( R  e.  Ring  /\  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) ) )
251, 3, 24pm5.21nii 706 1  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\ 
A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   .rcmulr 13025   Mndcmnd 13363  CMndccmn 13735  mulGrpcmgp 13797   Ringcrg 13873   CRingccrg 13874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-cmn 13737  df-mgp 13798  df-ring 13875  df-cring 13876
This theorem is referenced by:  quscrng  14410
  Copyright terms: Public domain W3C validator