| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iscrng2 | Unicode version | ||
| Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| ringcl.b |
|
| ringcl.t |
|
| Ref | Expression |
|---|---|
| iscrng2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | elex 2774 |
. . 3
| |
| 3 | 2 | adantr 276 |
. 2
|
| 4 | eqid 2196 |
. . . 4
| |
| 5 | 4 | iscrng 13635 |
. . 3
|
| 6 | 4 | ringmgp 13634 |
. . . . 5
|
| 7 | eqid 2196 |
. . . . . . . 8
| |
| 8 | eqid 2196 |
. . . . . . . 8
| |
| 9 | 7, 8 | iscmn 13499 |
. . . . . . 7
|
| 10 | ringcl.b |
. . . . . . . . . 10
| |
| 11 | 4, 10 | mgpbasg 13558 |
. . . . . . . . 9
|
| 12 | ringcl.t |
. . . . . . . . . . . . 13
| |
| 13 | 4, 12 | mgpplusgg 13556 |
. . . . . . . . . . . 12
|
| 14 | 13 | oveqd 5942 |
. . . . . . . . . . 11
|
| 15 | 13 | oveqd 5942 |
. . . . . . . . . . 11
|
| 16 | 14, 15 | eqeq12d 2211 |
. . . . . . . . . 10
|
| 17 | 11, 16 | raleqbidv 2709 |
. . . . . . . . 9
|
| 18 | 11, 17 | raleqbidv 2709 |
. . . . . . . 8
|
| 19 | 18 | anbi2d 464 |
. . . . . . 7
|
| 20 | 9, 19 | bitr4id 199 |
. . . . . 6
|
| 21 | 20 | baibd 924 |
. . . . 5
|
| 22 | 6, 21 | sylan2 286 |
. . . 4
|
| 23 | 22 | pm5.32da 452 |
. . 3
|
| 24 | 5, 23 | bitrid 192 |
. 2
|
| 25 | 1, 3, 24 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-cmn 13492 df-mgp 13553 df-ring 13630 df-cring 13631 |
| This theorem is referenced by: quscrng 14165 |
| Copyright terms: Public domain | W3C validator |