ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrng2 Unicode version

Theorem iscrng2 12991
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
ringcl.b  |-  B  =  ( Base `  R
)
ringcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
iscrng2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\ 
A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
Distinct variable groups:    x, y, B   
x, R, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem iscrng2
StepHypRef Expression
1 elex 2746 . 2  |-  ( R  e.  CRing  ->  R  e.  _V )
2 elex 2746 . . 3  |-  ( R  e.  Ring  ->  R  e. 
_V )
32adantr 276 . 2  |-  ( ( R  e.  Ring  /\  A. x  e.  B  A. y  e.  B  (
x  .x.  y )  =  ( y  .x.  x ) )  ->  R  e.  _V )
4 eqid 2175 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
54iscrng 12979 . . 3  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd ) )
64ringmgp 12978 . . . . 5  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
7 eqid 2175 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
8 eqid 2175 . . . . . . . 8  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
97, 8iscmn 12892 . . . . . . 7  |-  ( (mulGrp `  R )  e. CMnd  <->  ( (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  (mulGrp `  R
) ) A. y  e.  ( Base `  (mulGrp `  R ) ) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
10 ringcl.b . . . . . . . . . 10  |-  B  =  ( Base `  R
)
114, 10mgpbasg 12930 . . . . . . . . 9  |-  ( R  e.  _V  ->  B  =  ( Base `  (mulGrp `  R ) ) )
12 ringcl.t . . . . . . . . . . . . 13  |-  .x.  =  ( .r `  R )
134, 12mgpplusgg 12929 . . . . . . . . . . . 12  |-  ( R  e.  _V  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1413oveqd 5882 . . . . . . . . . . 11  |-  ( R  e.  _V  ->  (
x  .x.  y )  =  ( x ( +g  `  (mulGrp `  R ) ) y ) )
1513oveqd 5882 . . . . . . . . . . 11  |-  ( R  e.  _V  ->  (
y  .x.  x )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) )
1614, 15eqeq12d 2190 . . . . . . . . . 10  |-  ( R  e.  _V  ->  (
( x  .x.  y
)  =  ( y 
.x.  x )  <->  ( x
( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
1711, 16raleqbidv 2682 . . . . . . . . 9  |-  ( R  e.  _V  ->  ( A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x )  <->  A. y  e.  ( Base `  (mulGrp `  R ) ) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
1811, 17raleqbidv 2682 . . . . . . . 8  |-  ( R  e.  _V  ->  ( A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) A. y  e.  ( Base `  (mulGrp `  R )
) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
1918anbi2d 464 . . . . . . 7  |-  ( R  e.  _V  ->  (
( (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  B  A. y  e.  B  (
x  .x.  y )  =  ( y  .x.  x ) )  <->  ( (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  (mulGrp `  R
) ) A. y  e.  ( Base `  (mulGrp `  R ) ) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) ) )
209, 19bitr4id 199 . . . . . 6  |-  ( R  e.  _V  ->  (
(mulGrp `  R )  e. CMnd  <-> 
( (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  B  A. y  e.  B  (
x  .x.  y )  =  ( y  .x.  x ) ) ) )
2120baibd 923 . . . . 5  |-  ( ( R  e.  _V  /\  (mulGrp `  R )  e. 
Mnd )  ->  (
(mulGrp `  R )  e. CMnd  <->  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
226, 21sylan2 286 . . . 4  |-  ( ( R  e.  _V  /\  R  e.  Ring )  -> 
( (mulGrp `  R
)  e. CMnd  <->  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
2322pm5.32da 452 . . 3  |-  ( R  e.  _V  ->  (
( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd )  <->  ( R  e. 
Ring  /\  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) ) )
245, 23bitrid 192 . 2  |-  ( R  e.  _V  ->  ( R  e.  CRing  <->  ( R  e.  Ring  /\  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) ) )
251, 3, 24pm5.21nii 704 1  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\ 
A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   _Vcvv 2735   ` cfv 5208  (class class class)co 5865   Basecbs 12428   +g cplusg 12492   .rcmulr 12493   Mndcmnd 12682  CMndccmn 12884  mulGrpcmgp 12925   Ringcrg 12972   CRingccrg 12973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12431  df-slot 12432  df-base 12434  df-sets 12435  df-plusg 12505  df-mulr 12506  df-cmn 12886  df-mgp 12926  df-ring 12974  df-cring 12975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator