ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrng2 Unicode version

Theorem iscrng2 13647
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
ringcl.b  |-  B  =  ( Base `  R
)
ringcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
iscrng2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\ 
A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
Distinct variable groups:    x, y, B   
x, R, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem iscrng2
StepHypRef Expression
1 elex 2774 . 2  |-  ( R  e.  CRing  ->  R  e.  _V )
2 elex 2774 . . 3  |-  ( R  e.  Ring  ->  R  e. 
_V )
32adantr 276 . 2  |-  ( ( R  e.  Ring  /\  A. x  e.  B  A. y  e.  B  (
x  .x.  y )  =  ( y  .x.  x ) )  ->  R  e.  _V )
4 eqid 2196 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
54iscrng 13635 . . 3  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd ) )
64ringmgp 13634 . . . . 5  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
7 eqid 2196 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
8 eqid 2196 . . . . . . . 8  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
97, 8iscmn 13499 . . . . . . 7  |-  ( (mulGrp `  R )  e. CMnd  <->  ( (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  (mulGrp `  R
) ) A. y  e.  ( Base `  (mulGrp `  R ) ) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
10 ringcl.b . . . . . . . . . 10  |-  B  =  ( Base `  R
)
114, 10mgpbasg 13558 . . . . . . . . 9  |-  ( R  e.  _V  ->  B  =  ( Base `  (mulGrp `  R ) ) )
12 ringcl.t . . . . . . . . . . . . 13  |-  .x.  =  ( .r `  R )
134, 12mgpplusgg 13556 . . . . . . . . . . . 12  |-  ( R  e.  _V  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1413oveqd 5942 . . . . . . . . . . 11  |-  ( R  e.  _V  ->  (
x  .x.  y )  =  ( x ( +g  `  (mulGrp `  R ) ) y ) )
1513oveqd 5942 . . . . . . . . . . 11  |-  ( R  e.  _V  ->  (
y  .x.  x )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) )
1614, 15eqeq12d 2211 . . . . . . . . . 10  |-  ( R  e.  _V  ->  (
( x  .x.  y
)  =  ( y 
.x.  x )  <->  ( x
( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
1711, 16raleqbidv 2709 . . . . . . . . 9  |-  ( R  e.  _V  ->  ( A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x )  <->  A. y  e.  ( Base `  (mulGrp `  R ) ) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
1811, 17raleqbidv 2709 . . . . . . . 8  |-  ( R  e.  _V  ->  ( A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) A. y  e.  ( Base `  (mulGrp `  R )
) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) )
1918anbi2d 464 . . . . . . 7  |-  ( R  e.  _V  ->  (
( (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  B  A. y  e.  B  (
x  .x.  y )  =  ( y  .x.  x ) )  <->  ( (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  (mulGrp `  R
) ) A. y  e.  ( Base `  (mulGrp `  R ) ) ( x ( +g  `  (mulGrp `  R ) ) y )  =  ( y ( +g  `  (mulGrp `  R ) ) x ) ) ) )
209, 19bitr4id 199 . . . . . 6  |-  ( R  e.  _V  ->  (
(mulGrp `  R )  e. CMnd  <-> 
( (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  B  A. y  e.  B  (
x  .x.  y )  =  ( y  .x.  x ) ) ) )
2120baibd 924 . . . . 5  |-  ( ( R  e.  _V  /\  (mulGrp `  R )  e. 
Mnd )  ->  (
(mulGrp `  R )  e. CMnd  <->  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
226, 21sylan2 286 . . . 4  |-  ( ( R  e.  _V  /\  R  e.  Ring )  -> 
( (mulGrp `  R
)  e. CMnd  <->  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
2322pm5.32da 452 . . 3  |-  ( R  e.  _V  ->  (
( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd )  <->  ( R  e. 
Ring  /\  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) ) )
245, 23bitrid 192 . 2  |-  ( R  e.  _V  ->  ( R  e.  CRing  <->  ( R  e.  Ring  /\  A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) ) )
251, 3, 24pm5.21nii 705 1  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\ 
A. x  e.  B  A. y  e.  B  ( x  .x.  y )  =  ( y  .x.  x ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   Mndcmnd 13118  CMndccmn 13490  mulGrpcmgp 13552   Ringcrg 13628   CRingccrg 13629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-cmn 13492  df-mgp 13553  df-ring 13630  df-cring 13631
This theorem is referenced by:  quscrng  14165
  Copyright terms: Public domain W3C validator