ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg3 Unicode version

Theorem issubrg3 13879
Description: A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubrg3.m  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
issubrg3  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )

Proof of Theorem issubrg3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2196 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
3 eqid 2196 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
41, 2, 3issubrg2 13873 . . 3  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
5 3anass 984 . . 3  |-  ( ( S  e.  (SubGrp `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) )
64, 5bitrdi 196 . 2  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
71subgss 13380 . . . 4  |-  ( S  e.  (SubGrp `  R
)  ->  S  C_  ( Base `  R ) )
8 issubrg3.m . . . . . . . . 9  |-  M  =  (mulGrp `  R )
98ringmgp 13634 . . . . . . . 8  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
10 eqid 2196 . . . . . . . . 9  |-  ( Base `  M )  =  (
Base `  M )
11 eqid 2196 . . . . . . . . 9  |-  ( 0g
`  M )  =  ( 0g `  M
)
12 eqid 2196 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
1310, 11, 12issubm 13174 . . . . . . . 8  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) ) )
149, 13syl 14 . . . . . . 7  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) ) )
158, 1mgpbasg 13558 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  M )
)
1615sseq2d 3214 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( S 
C_  ( Base `  R
)  <->  S  C_  ( Base `  M ) ) )
178, 2ringidvalg 13593 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 0g `  M
) )
1817eleq1d 2265 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  e.  S  <->  ( 0g `  M )  e.  S
) )
198, 3mgpplusgg 13556 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  M
) )
2019oveqd 5942 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( x ( .r `  R
) y )  =  ( x ( +g  `  M ) y ) )
2120eleq1d 2265 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( ( x ( .r `  R ) y )  e.  S  <->  ( x
( +g  `  M ) y )  e.  S
) )
22212ralbidv 2521 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S  <->  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2316, 18, 223anbi123d 1323 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( S  C_  ( Base `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) ) )
2414, 23bitr4d 191 . . . . . 6  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
25 3anass 984 . . . . . 6  |-  ( ( S  C_  ( Base `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  C_  ( Base `  R
)  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S ) ) )
2624, 25bitrdi 196 . . . . 5  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
2726baibd 924 . . . 4  |-  ( ( R  e.  Ring  /\  S  C_  ( Base `  R
) )  ->  ( S  e.  (SubMnd `  M
)  <->  ( ( 1r
`  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S ) ) )
287, 27sylan2 286 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  (SubGrp `  R )
)  ->  ( S  e.  (SubMnd `  M )  <->  ( ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
2928pm5.32da 452 . 2  |-  ( R  e.  Ring  ->  ( ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M )
)  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
306, 29bitr4d 191 1  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   0gc0g 12958   Mndcmnd 13118  SubMndcsubmnd 13160  SubGrpcsubg 13373  mulGrpcmgp 13552   1rcur 13591   Ringcrg 13628  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-submnd 13162  df-subg 13376  df-mgp 13553  df-ur 13592  df-ring 13630  df-subrg 13851
This theorem is referenced by:  rhmeql  13882  rhmima  13883
  Copyright terms: Public domain W3C validator