ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg3 Unicode version

Theorem issubrg3 13306
Description: A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubrg3.m  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
issubrg3  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )

Proof of Theorem issubrg3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2177 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
3 eqid 2177 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
41, 2, 3issubrg2 13300 . . 3  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
5 3anass 982 . . 3  |-  ( ( S  e.  (SubGrp `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) )
64, 5bitrdi 196 . 2  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
71subgss 12965 . . . 4  |-  ( S  e.  (SubGrp `  R
)  ->  S  C_  ( Base `  R ) )
8 issubrg3.m . . . . . . . . 9  |-  M  =  (mulGrp `  R )
98ringmgp 13116 . . . . . . . 8  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
10 eqid 2177 . . . . . . . . 9  |-  ( Base `  M )  =  (
Base `  M )
11 eqid 2177 . . . . . . . . 9  |-  ( 0g
`  M )  =  ( 0g `  M
)
12 eqid 2177 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
1310, 11, 12issubm 12795 . . . . . . . 8  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) ) )
149, 13syl 14 . . . . . . 7  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) ) )
158, 1mgpbasg 13067 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  M )
)
1615sseq2d 3185 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( S 
C_  ( Base `  R
)  <->  S  C_  ( Base `  M ) ) )
178, 2ringidvalg 13075 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 0g `  M
) )
1817eleq1d 2246 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  e.  S  <->  ( 0g `  M )  e.  S
) )
198, 3mgpplusgg 13065 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  M
) )
2019oveqd 5889 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( x ( .r `  R
) y )  =  ( x ( +g  `  M ) y ) )
2120eleq1d 2246 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( ( x ( .r `  R ) y )  e.  S  <->  ( x
( +g  `  M ) y )  e.  S
) )
22212ralbidv 2501 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S  <->  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2316, 18, 223anbi123d 1312 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( S  C_  ( Base `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) ) )
2414, 23bitr4d 191 . . . . . 6  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
25 3anass 982 . . . . . 6  |-  ( ( S  C_  ( Base `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  C_  ( Base `  R
)  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S ) ) )
2624, 25bitrdi 196 . . . . 5  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
2726baibd 923 . . . 4  |-  ( ( R  e.  Ring  /\  S  C_  ( Base `  R
) )  ->  ( S  e.  (SubMnd `  M
)  <->  ( ( 1r
`  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S ) ) )
287, 27sylan2 286 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  (SubGrp `  R )
)  ->  ( S  e.  (SubMnd `  M )  <->  ( ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
2928pm5.32da 452 . 2  |-  ( R  e.  Ring  ->  ( ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M )
)  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
306, 29bitr4d 191 1  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3129   ` cfv 5215  (class class class)co 5872   Basecbs 12454   +g cplusg 12528   .rcmulr 12529   0gc0g 12693   Mndcmnd 12749  SubMndcsubmnd 12782  SubGrpcsubg 12958  mulGrpcmgp 13061   1rcur 13073   Ringcrg 13110  SubRingcsubrg 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-pre-ltirr 7920  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-ltxr 7993  df-inn 8916  df-2 8974  df-3 8975  df-ndx 12457  df-slot 12458  df-base 12460  df-sets 12461  df-iress 12462  df-plusg 12541  df-mulr 12542  df-0g 12695  df-mgm 12707  df-sgrp 12740  df-mnd 12750  df-submnd 12784  df-subg 12961  df-mgp 13062  df-ur 13074  df-ring 13112  df-subrg 13278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator