ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg3 Unicode version

Theorem issubrg3 13373
Description: A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubrg3.m  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
issubrg3  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )

Proof of Theorem issubrg3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2177 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
3 eqid 2177 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
41, 2, 3issubrg2 13367 . . 3  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
5 3anass 982 . . 3  |-  ( ( S  e.  (SubGrp `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) )
64, 5bitrdi 196 . 2  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
71subgss 13039 . . . 4  |-  ( S  e.  (SubGrp `  R
)  ->  S  C_  ( Base `  R ) )
8 issubrg3.m . . . . . . . . 9  |-  M  =  (mulGrp `  R )
98ringmgp 13190 . . . . . . . 8  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
10 eqid 2177 . . . . . . . . 9  |-  ( Base `  M )  =  (
Base `  M )
11 eqid 2177 . . . . . . . . 9  |-  ( 0g
`  M )  =  ( 0g `  M
)
12 eqid 2177 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
1310, 11, 12issubm 12868 . . . . . . . 8  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) ) )
149, 13syl 14 . . . . . . 7  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) ) )
158, 1mgpbasg 13141 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  M )
)
1615sseq2d 3187 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( S 
C_  ( Base `  R
)  <->  S  C_  ( Base `  M ) ) )
178, 2ringidvalg 13149 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 0g `  M
) )
1817eleq1d 2246 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  e.  S  <->  ( 0g `  M )  e.  S
) )
198, 3mgpplusgg 13139 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  M
) )
2019oveqd 5894 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( x ( .r `  R
) y )  =  ( x ( +g  `  M ) y ) )
2120eleq1d 2246 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( ( x ( .r `  R ) y )  e.  S  <->  ( x
( +g  `  M ) y )  e.  S
) )
22212ralbidv 2501 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S  <->  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2316, 18, 223anbi123d 1312 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( S  C_  ( Base `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) ) )
2414, 23bitr4d 191 . . . . . 6  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
25 3anass 982 . . . . . 6  |-  ( ( S  C_  ( Base `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  C_  ( Base `  R
)  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S ) ) )
2624, 25bitrdi 196 . . . . 5  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
2726baibd 923 . . . 4  |-  ( ( R  e.  Ring  /\  S  C_  ( Base `  R
) )  ->  ( S  e.  (SubMnd `  M
)  <->  ( ( 1r
`  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S ) ) )
287, 27sylan2 286 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  (SubGrp `  R )
)  ->  ( S  e.  (SubMnd `  M )  <->  ( ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
2928pm5.32da 452 . 2  |-  ( R  e.  Ring  ->  ( ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M )
)  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
306, 29bitr4d 191 1  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   .rcmulr 12539   0gc0g 12710   Mndcmnd 12822  SubMndcsubmnd 12855  SubGrpcsubg 13032  mulGrpcmgp 13135   1rcur 13147   Ringcrg 13184  SubRingcsubrg 13343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-submnd 12857  df-subg 13035  df-mgp 13136  df-ur 13148  df-ring 13186  df-subrg 13345
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator