ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg3 Unicode version

Theorem issubrg3 14211
Description: A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubrg3.m  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
issubrg3  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )

Proof of Theorem issubrg3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2229 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
3 eqid 2229 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
41, 2, 3issubrg2 14205 . . 3  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
5 3anass 1006 . . 3  |-  ( ( S  e.  (SubGrp `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) )
64, 5bitrdi 196 . 2  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
71subgss 13711 . . . 4  |-  ( S  e.  (SubGrp `  R
)  ->  S  C_  ( Base `  R ) )
8 issubrg3.m . . . . . . . . 9  |-  M  =  (mulGrp `  R )
98ringmgp 13965 . . . . . . . 8  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
10 eqid 2229 . . . . . . . . 9  |-  ( Base `  M )  =  (
Base `  M )
11 eqid 2229 . . . . . . . . 9  |-  ( 0g
`  M )  =  ( 0g `  M
)
12 eqid 2229 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
1310, 11, 12issubm 13505 . . . . . . . 8  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) ) )
149, 13syl 14 . . . . . . 7  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  M
) y )  e.  S ) ) )
158, 1mgpbasg 13889 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  M )
)
1615sseq2d 3254 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( S 
C_  ( Base `  R
)  <->  S  C_  ( Base `  M ) ) )
178, 2ringidvalg 13924 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 1r
`  R )  =  ( 0g `  M
) )
1817eleq1d 2298 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  e.  S  <->  ( 0g `  M )  e.  S
) )
198, 3mgpplusgg 13887 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( +g  `  M
) )
2019oveqd 6018 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( x ( .r `  R
) y )  =  ( x ( +g  `  M ) y ) )
2120eleq1d 2298 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( ( x ( .r `  R ) y )  e.  S  <->  ( x
( +g  `  M ) y )  e.  S
) )
22212ralbidv 2554 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S  <->  A. x  e.  S  A. y  e.  S  ( x
( +g  `  M ) y )  e.  S
) )
2316, 18, 223anbi123d 1346 . . . . . . 7  |-  ( R  e.  Ring  ->  ( ( S  C_  ( Base `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  M ) y )  e.  S ) ) )
2414, 23bitr4d 191 . . . . . 6  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
25 3anass 1006 . . . . . 6  |-  ( ( S  C_  ( Base `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  C_  ( Base `  R
)  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S ) ) )
2624, 25bitrdi 196 . . . . 5  |-  ( R  e.  Ring  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
2726baibd 928 . . . 4  |-  ( ( R  e.  Ring  /\  S  C_  ( Base `  R
) )  ->  ( S  e.  (SubMnd `  M
)  <->  ( ( 1r
`  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S ) ) )
287, 27sylan2 286 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  (SubGrp `  R )
)  ->  ( S  e.  (SubMnd `  M )  <->  ( ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
2928pm5.32da 452 . 2  |-  ( R  e.  Ring  ->  ( ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M )
)  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
306, 29bitr4d 191 1  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   .rcmulr 13111   0gc0g 13289   Mndcmnd 13449  SubMndcsubmnd 13491  SubGrpcsubg 13704  mulGrpcmgp 13883   1rcur 13922   Ringcrg 13959  SubRingcsubrg 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-submnd 13493  df-subg 13707  df-mgp 13884  df-ur 13923  df-ring 13961  df-subrg 14183
This theorem is referenced by:  rhmeql  14214  rhmima  14215
  Copyright terms: Public domain W3C validator