Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex2 Unicode version

Theorem bdinex2 14691
Description: Bounded version of inex2 4140. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex2.bd  |- BOUNDED  B
bdinex2.1  |-  A  e. 
_V
Assertion
Ref Expression
bdinex2  |-  ( B  i^i  A )  e. 
_V

Proof of Theorem bdinex2
StepHypRef Expression
1 incom 3329 . 2  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2 bdinex2.bd . . 3  |- BOUNDED  B
3 bdinex2.1 . . 3  |-  A  e. 
_V
42, 3bdinex1 14690 . 2  |-  ( A  i^i  B )  e. 
_V
51, 4eqeltri 2250 1  |-  ( B  i^i  A )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2739    i^i cin 3130  BOUNDED wbdc 14631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-bdsep 14675
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-bdc 14632
This theorem is referenced by:  bdssex  14693
  Copyright terms: Public domain W3C validator