Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1g Unicode version

Theorem bdinex1g 13447
Description: Bounded version of inex1g 4100. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdinex1g.bd  |- BOUNDED  B
Assertion
Ref Expression
bdinex1g  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )

Proof of Theorem bdinex1g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ineq1 3301 . . 3  |-  ( x  =  A  ->  (
x  i^i  B )  =  ( A  i^i  B ) )
21eleq1d 2226 . 2  |-  ( x  =  A  ->  (
( x  i^i  B
)  e.  _V  <->  ( A  i^i  B )  e.  _V ) )
3 bdinex1g.bd . . 3  |- BOUNDED  B
4 vex 2715 . . 3  |-  x  e. 
_V
53, 4bdinex1 13445 . 2  |-  ( x  i^i  B )  e. 
_V
62, 5vtoclg 2772 1  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128   _Vcvv 2712    i^i cin 3101  BOUNDED wbdc 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-bdsep 13430
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108  df-bdc 13387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator