![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltri | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltr.1 |
![]() ![]() ![]() ![]() |
eqeltr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeltri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltr.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqeltr.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eleq1i 2259 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: eqeltrri 2267 3eltr4i 2275 intab 3900 inex2 4165 vpwex 4209 ord3ex 4220 uniopel 4286 onsucelsucexmid 4563 nnpredcl 4656 elvvuni 4724 isarep2 5342 acexmidlemcase 5914 abrexex2 6178 oprabex 6182 oprabrexex2 6184 mpoexw 6268 rdg0 6442 frecex 6449 1on 6478 2on 6480 3on 6482 4on 6483 1onn 6575 2onn 6576 3onn 6577 4onn 6578 mapsnf1o2 6752 exmidpw 6966 exmidpw2en 6970 unfiexmid 6976 xpfi 6988 ssfirab 6992 fnfi 6997 iunfidisj 7007 fidcenumlemr 7016 sbthlemi10 7027 ctmlemr 7169 nninfex 7182 exmidonfinlem 7255 acfun 7269 exmidaclem 7270 pw1ne1 7291 ccfunen 7326 nqex 7425 nq0ex 7502 1pr 7616 ltexprlempr 7670 recexprlempr 7694 cauappcvgprlemcl 7715 caucvgprlemcl 7738 caucvgprprlemcl 7766 addvalex 7906 peano1nnnn 7914 peano2nnnn 7915 axcnex 7921 ax1cn 7923 ax1re 7924 pnfxr 8074 mnfxr 8078 inelr 8605 cju 8982 2re 9054 3re 9058 4re 9061 5re 9063 6re 9065 7re 9067 8re 9069 9re 9071 2nn 9146 3nn 9147 4nn 9148 5nn 9149 6nn 9150 7nn 9151 8nn 9152 9nn 9153 nn0ex 9249 nneoor 9422 zeo 9425 deccl 9465 decnncl 9470 numnncl2 9473 decnncl2 9474 numsucc 9490 numma2c 9496 numadd 9497 numaddc 9498 nummul1c 9499 nummul2c 9500 xnegcl 9901 xrex 9925 ioof 10040 uzennn 10510 xnn0nnen 10511 seqex 10523 m1expcl2 10635 faccl 10809 facwordi 10814 faclbnd2 10816 bccl 10841 crre 11004 remim 11007 absval 11148 climle 11480 climcvg1nlem 11495 iserabs 11621 geo2lim 11662 prodfclim1 11690 fprodle 11786 ere 11816 ege2le3 11817 eftlub 11836 efsep 11837 tan0 11877 ef01bndlem 11902 nn0o 12051 pczpre 12438 pockthi 12499 igz 12515 ennnfonelemj0 12561 ennnfonelem0 12565 ndxarg 12644 ndxslid 12646 strndxid 12649 basendxnn 12677 strle1g 12727 plusgndxnn 12732 2strbasg 12740 2stropg 12741 tsetndxnn 12809 plendxnn 12823 dsndxnn 12834 unifndxnn 12844 rmodislmodlem 13849 rmodislmod 13850 cndsex 14052 znval 14135 znle 14136 znbaslemnn 14138 znbas 14143 znzrhval 14146 psrval 14163 fczpsrbag 14168 setsmsbasg 14658 cnbl0 14713 cnopncntop 14723 cnopn 14724 remet 14727 divcnap 14744 expcn 14748 climcncf 14763 idcncf 14780 expcncf 14788 cnrehmeocntop 14789 hovercncf 14825 plyrecj 14941 sincn 14945 coscn 14946 2logb9irrALT 15147 2irrexpq 15149 2irrexpqap 15151 lgslem4 15160 lgsdir2lem2 15186 bdinex2 15462 bj-inex 15469 012of 15556 2o01f 15557 peano3nninf 15567 cvgcmp2nlemabs 15592 trilpolemisumle 15598 |
Copyright terms: Public domain | W3C validator |