| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltr.1 |
|
| eqeltr.2 |
|
| Ref | Expression |
|---|---|
| eqeltri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltr.2 |
. 2
| |
| 2 | eqeltr.1 |
. . 3
| |
| 3 | 2 | eleq1i 2271 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: eqeltrri 2279 3eltr4i 2287 intab 3914 inex2 4180 vpwex 4224 ord3ex 4235 uniopel 4302 onsucelsucexmid 4579 nnpredcl 4672 elvvuni 4740 isarep2 5362 acexmidlemcase 5941 abrexex2 6211 oprabex 6215 oprabrexex2 6217 mpoexw 6301 rdg0 6475 frecex 6482 1on 6511 2on 6513 3on 6515 4on 6516 1onn 6608 2onn 6609 3onn 6610 4onn 6611 mapsnf1o2 6785 exmidpw 7007 exmidpw2en 7011 unfiexmid 7017 xpfi 7031 ssfirab 7035 fnfi 7040 iunfidisj 7050 fidcenumlemr 7059 sbthlemi10 7070 ctmlemr 7212 nninfex 7225 exmidonfinlem 7303 acfun 7321 exmidaclem 7322 pw1ne1 7343 ccfunen 7378 nqex 7478 nq0ex 7555 1pr 7669 ltexprlempr 7723 recexprlempr 7747 cauappcvgprlemcl 7768 caucvgprlemcl 7791 caucvgprprlemcl 7819 addvalex 7959 peano1nnnn 7967 peano2nnnn 7968 axcnex 7974 ax1cn 7976 ax1re 7977 pnfxr 8127 mnfxr 8131 inelr 8659 cju 9036 2re 9108 3re 9112 4re 9115 5re 9117 6re 9119 7re 9121 8re 9123 9re 9125 2nn 9200 3nn 9201 4nn 9202 5nn 9203 6nn 9204 7nn 9205 8nn 9206 9nn 9207 nn0ex 9303 nneoor 9477 zeo 9480 deccl 9520 decnncl 9525 numnncl2 9528 decnncl2 9529 numsucc 9545 numma2c 9551 numadd 9552 numaddc 9553 nummul1c 9554 nummul2c 9555 xnegcl 9956 xrex 9980 ioof 10095 uzennn 10583 xnn0nnen 10584 seqex 10596 m1expcl2 10708 faccl 10882 facwordi 10887 faclbnd2 10889 bccl 10914 lswex 11047 crre 11201 remim 11204 absval 11345 climle 11678 climcvg1nlem 11693 iserabs 11819 geo2lim 11860 prodfclim1 11888 fprodle 11984 ere 12014 ege2le3 12015 eftlub 12034 efsep 12035 tan0 12075 ef01bndlem 12100 nn0o 12251 pczpre 12653 pockthi 12714 igz 12730 ennnfonelemj0 12805 ennnfonelem0 12809 ndxarg 12888 ndxslid 12890 strndxid 12893 basendxnn 12921 strle1g 12971 plusgndxnn 12976 2strbasg 12985 2stropg 12986 tsetndxnn 13054 plendxnn 13068 dsndxnn 13083 unifndxnn 13093 rmodislmodlem 14145 rmodislmod 14146 cndsex 14348 znval 14431 znle 14432 znbaslemnn 14434 znbas 14439 znzrhval 14442 psrval 14461 fczpsrbag 14466 setsmsbasg 14984 cnbl0 15039 cnopncntop 15049 cnopn 15050 remet 15053 divcnap 15070 expcn 15074 climcncf 15089 idcncf 15106 expcncf 15114 cnrehmeocntop 15115 hovercncf 15151 plyrecj 15268 sincn 15274 coscn 15275 2logb9irrALT 15479 2irrexpq 15481 2irrexpqap 15483 lgslem4 15513 lgsdir2lem2 15539 edgfndxnn 15640 bdinex2 15873 bj-inex 15880 012of 15967 2o01f 15968 peano3nninf 15981 cvgcmp2nlemabs 16008 trilpolemisumle 16014 |
| Copyright terms: Public domain | W3C validator |