Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltri | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltr.1 | |
eqeltr.2 |
Ref | Expression |
---|---|
eqeltri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltr.2 | . 2 | |
2 | eqeltr.1 | . . 3 | |
3 | 2 | eleq1i 2231 | . 2 |
4 | 1, 3 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: eqeltrri 2239 3eltr4i 2247 intab 3852 inex2 4116 vpwex 4157 ord3ex 4168 uniopel 4233 onsucelsucexmid 4506 nnpredcl 4599 elvvuni 4667 isarep2 5274 acexmidlemcase 5836 abrexex2 6089 oprabex 6093 oprabrexex2 6095 rdg0 6351 frecex 6358 1on 6387 2on 6389 3on 6391 4on 6392 1onn 6484 2onn 6485 3onn 6486 4onn 6487 mapsnf1o2 6658 exmidpw 6870 unfiexmid 6879 xpfi 6891 ssfirab 6895 fnfi 6898 iunfidisj 6907 fidcenumlemr 6916 sbthlemi10 6927 ctmlemr 7069 nninfex 7082 exmidonfinlem 7145 acfun 7159 exmidaclem 7160 pw1ne1 7181 ccfunen 7201 nqex 7300 nq0ex 7377 1pr 7491 ltexprlempr 7545 recexprlempr 7569 cauappcvgprlemcl 7590 caucvgprlemcl 7613 caucvgprprlemcl 7641 addvalex 7781 peano1nnnn 7789 peano2nnnn 7790 axcnex 7796 ax1cn 7798 ax1re 7799 pnfxr 7947 mnfxr 7951 inelr 8478 cju 8852 2re 8923 3re 8927 4re 8930 5re 8932 6re 8934 7re 8936 8re 8938 9re 8940 2nn 9014 3nn 9015 4nn 9016 5nn 9017 6nn 9018 7nn 9019 8nn 9020 9nn 9021 nn0ex 9116 nneoor 9289 zeo 9292 deccl 9332 decnncl 9337 numnncl2 9340 decnncl2 9341 numsucc 9357 numma2c 9363 numadd 9364 numaddc 9365 nummul1c 9366 nummul2c 9367 xnegcl 9764 xrex 9788 ioof 9903 uzennn 10367 seqex 10378 m1expcl2 10473 faccl 10644 facwordi 10649 faclbnd2 10651 bccl 10676 crre 10795 remim 10798 absval 10939 climle 11271 climcvg1nlem 11286 iserabs 11412 geo2lim 11453 prodfclim1 11481 fprodle 11577 ere 11607 ege2le3 11608 eftlub 11627 efsep 11628 tan0 11668 ef01bndlem 11693 nn0o 11840 pczpre 12225 pockthi 12284 igz 12300 ennnfonelemj0 12330 ennnfonelem0 12334 ndxarg 12413 ndxslid 12415 strndxid 12418 basendxnn 12445 strle1g 12480 2strbasg 12491 2stropg 12492 setsmsbasg 13079 cnbl0 13134 cnopncntop 13137 remet 13140 divcnap 13155 climcncf 13171 expcncf 13192 cnrehmeocntop 13193 sincn 13290 coscn 13291 2logb9irrALT 13492 2irrexpq 13494 2irrexpqap 13496 lgslem4 13504 lgsdir2lem2 13530 bdinex2 13742 bj-inex 13749 012of 13835 2o01f 13836 peano3nninf 13847 cvgcmp2nlemabs 13871 trilpolemisumle 13877 |
Copyright terms: Public domain | W3C validator |