| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltr.1 |
|
| eqeltr.2 |
|
| Ref | Expression |
|---|---|
| eqeltri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltr.2 |
. 2
| |
| 2 | eqeltr.1 |
. . 3
| |
| 3 | 2 | eleq1i 2262 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eqeltrri 2270 3eltr4i 2278 intab 3904 inex2 4169 vpwex 4213 ord3ex 4224 uniopel 4290 onsucelsucexmid 4567 nnpredcl 4660 elvvuni 4728 isarep2 5346 acexmidlemcase 5920 abrexex2 6190 oprabex 6194 oprabrexex2 6196 mpoexw 6280 rdg0 6454 frecex 6461 1on 6490 2on 6492 3on 6494 4on 6495 1onn 6587 2onn 6588 3onn 6589 4onn 6590 mapsnf1o2 6764 exmidpw 6978 exmidpw2en 6982 unfiexmid 6988 xpfi 7002 ssfirab 7006 fnfi 7011 iunfidisj 7021 fidcenumlemr 7030 sbthlemi10 7041 ctmlemr 7183 nninfex 7196 exmidonfinlem 7272 acfun 7290 exmidaclem 7291 pw1ne1 7312 ccfunen 7347 nqex 7447 nq0ex 7524 1pr 7638 ltexprlempr 7692 recexprlempr 7716 cauappcvgprlemcl 7737 caucvgprlemcl 7760 caucvgprprlemcl 7788 addvalex 7928 peano1nnnn 7936 peano2nnnn 7937 axcnex 7943 ax1cn 7945 ax1re 7946 pnfxr 8096 mnfxr 8100 inelr 8628 cju 9005 2re 9077 3re 9081 4re 9084 5re 9086 6re 9088 7re 9090 8re 9092 9re 9094 2nn 9169 3nn 9170 4nn 9171 5nn 9172 6nn 9173 7nn 9174 8nn 9175 9nn 9176 nn0ex 9272 nneoor 9445 zeo 9448 deccl 9488 decnncl 9493 numnncl2 9496 decnncl2 9497 numsucc 9513 numma2c 9519 numadd 9520 numaddc 9521 nummul1c 9522 nummul2c 9523 xnegcl 9924 xrex 9948 ioof 10063 uzennn 10545 xnn0nnen 10546 seqex 10558 m1expcl2 10670 faccl 10844 facwordi 10849 faclbnd2 10851 bccl 10876 crre 11039 remim 11042 absval 11183 climle 11516 climcvg1nlem 11531 iserabs 11657 geo2lim 11698 prodfclim1 11726 fprodle 11822 ere 11852 ege2le3 11853 eftlub 11872 efsep 11873 tan0 11913 ef01bndlem 11938 nn0o 12089 pczpre 12491 pockthi 12552 igz 12568 ennnfonelemj0 12643 ennnfonelem0 12647 ndxarg 12726 ndxslid 12728 strndxid 12731 basendxnn 12759 strle1g 12809 plusgndxnn 12814 2strbasg 12822 2stropg 12823 tsetndxnn 12891 plendxnn 12905 dsndxnn 12920 unifndxnn 12930 rmodislmodlem 13982 rmodislmod 13983 cndsex 14185 znval 14268 znle 14269 znbaslemnn 14271 znbas 14276 znzrhval 14279 psrval 14296 fczpsrbag 14301 setsmsbasg 14799 cnbl0 14854 cnopncntop 14864 cnopn 14865 remet 14868 divcnap 14885 expcn 14889 climcncf 14904 idcncf 14921 expcncf 14929 cnrehmeocntop 14930 hovercncf 14966 plyrecj 15083 sincn 15089 coscn 15090 2logb9irrALT 15294 2irrexpq 15296 2irrexpqap 15298 lgslem4 15328 lgsdir2lem2 15354 bdinex2 15630 bj-inex 15637 012of 15724 2o01f 15725 peano3nninf 15738 cvgcmp2nlemabs 15763 trilpolemisumle 15769 |
| Copyright terms: Public domain | W3C validator |