![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltri | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltr.1 |
![]() ![]() ![]() ![]() |
eqeltr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeltri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltr.2 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqeltr.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eleq1i 2180 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 145 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-4 1470 ax-17 1489 ax-ial 1497 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-cleq 2108 df-clel 2111 |
This theorem is referenced by: eqeltrri 2188 3eltr4i 2196 intab 3766 inex2 4023 vpwex 4063 ord3ex 4074 uniopel 4138 onsucelsucexmid 4405 nnpredcl 4496 elvvuni 4563 isarep2 5168 acexmidlemcase 5723 abrexex2 5976 oprabex 5980 oprabrexex2 5982 rdg0 6238 frecex 6245 1on 6274 2on 6276 3on 6278 4on 6279 1onn 6370 2onn 6371 3onn 6372 4onn 6373 mapsnf1o2 6544 exmidpw 6755 unfiexmid 6759 xpfi 6771 ssfirab 6774 fnfi 6777 iunfidisj 6786 fidcenumlemr 6795 sbthlemi10 6806 ctmlemr 6945 acfun 7011 exmidaclem 7012 ccfunen 7027 nqex 7119 nq0ex 7196 1pr 7310 ltexprlempr 7364 recexprlempr 7388 cauappcvgprlemcl 7409 caucvgprlemcl 7432 caucvgprprlemcl 7460 addvalex 7579 peano1nnnn 7587 peano2nnnn 7588 axcnex 7594 ax1cn 7596 ax1re 7597 pnfxr 7742 mnfxr 7746 inelr 8264 cju 8629 2re 8700 3re 8704 4re 8707 5re 8709 6re 8711 7re 8713 8re 8715 9re 8717 2nn 8785 3nn 8786 4nn 8787 5nn 8788 6nn 8789 7nn 8790 8nn 8791 9nn 8792 nn0ex 8887 nneoor 9057 zeo 9060 deccl 9100 decnncl 9105 numnncl2 9108 decnncl2 9109 numsucc 9125 numma2c 9131 numadd 9132 numaddc 9133 nummul1c 9134 nummul2c 9135 xnegcl 9508 xrex 9532 ioof 9647 uzennn 10102 seqex 10113 m1expcl2 10208 faccl 10374 facwordi 10379 faclbnd2 10381 bccl 10406 crre 10522 remim 10525 absval 10665 climle 10995 climcvg1nlem 11010 iserabs 11136 geo2lim 11177 ere 11227 ege2le3 11228 eftlub 11247 efsep 11248 tan0 11289 ef01bndlem 11314 nn0o 11452 ennnfonelemj0 11759 ennnfonelem0 11763 ndxarg 11825 ndxslid 11827 strndxid 11830 basendxnn 11857 strle1g 11892 2strbasg 11903 2stropg 11904 setsmsbasg 12468 cnbl0 12523 remet 12526 divcnap 12541 climcncf 12557 expcncf 12578 bdinex2 12790 bj-inex 12797 peano3nninf 12893 nninfex 12897 isomninnlem 12917 cvgcmp2nlemabs 12919 trilpolemisumle 12923 |
Copyright terms: Public domain | W3C validator |