| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltr.1 |
|
| eqeltr.2 |
|
| Ref | Expression |
|---|---|
| eqeltri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltr.2 |
. 2
| |
| 2 | eqeltr.1 |
. . 3
| |
| 3 | 2 | eleq1i 2295 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: eqeltrri 2303 3eltr4i 2311 intab 3952 inex2 4219 vpwex 4263 ord3ex 4274 uniopel 4343 onsucelsucexmid 4622 nnpredcl 4715 elvvuni 4783 isarep2 5408 acexmidlemcase 5996 abrexex2 6269 oprabex 6273 oprabrexex2 6275 mpoexw 6359 rdg0 6533 frecex 6540 1on 6569 2on 6571 3on 6573 4on 6574 1onn 6666 2onn 6667 3onn 6668 4onn 6669 mapsnf1o2 6843 exmidpw 7070 exmidpw2en 7074 unfiexmid 7080 xpfi 7094 ssfirab 7098 fnfi 7103 iunfidisj 7113 fidcenumlemr 7122 sbthlemi10 7133 ctmlemr 7275 nninfex 7288 exmidonfinlem 7371 acfun 7389 exmidaclem 7390 pw1ne1 7414 ccfunen 7450 nqex 7550 nq0ex 7627 1pr 7741 ltexprlempr 7795 recexprlempr 7819 cauappcvgprlemcl 7840 caucvgprlemcl 7863 caucvgprprlemcl 7891 addvalex 8031 peano1nnnn 8039 peano2nnnn 8040 axcnex 8046 ax1cn 8048 ax1re 8049 pnfxr 8199 mnfxr 8203 inelr 8731 cju 9108 2re 9180 3re 9184 4re 9187 5re 9189 6re 9191 7re 9193 8re 9195 9re 9197 2nn 9272 3nn 9273 4nn 9274 5nn 9275 6nn 9276 7nn 9277 8nn 9278 9nn 9279 nn0ex 9375 nneoor 9549 zeo 9552 deccl 9592 decnncl 9597 numnncl2 9600 decnncl2 9601 numsucc 9617 numma2c 9623 numadd 9624 numaddc 9625 nummul1c 9626 nummul2c 9627 xnegcl 10028 xrex 10052 ioof 10167 uzennn 10658 xnn0nnen 10659 seqex 10671 m1expcl2 10783 faccl 10957 facwordi 10962 faclbnd2 10964 bccl 10989 lswex 11123 crre 11368 remim 11371 absval 11512 climle 11845 climcvg1nlem 11860 iserabs 11986 geo2lim 12027 prodfclim1 12055 fprodle 12151 ere 12181 ege2le3 12182 eftlub 12201 efsep 12202 tan0 12242 ef01bndlem 12267 nn0o 12418 pczpre 12820 pockthi 12881 igz 12897 ennnfonelemj0 12972 ennnfonelem0 12976 ndxarg 13055 ndxslid 13057 strndxid 13060 basendxnn 13088 strle1g 13139 plusgndxnn 13144 2strbasg 13153 2stropg 13154 tsetndxnn 13222 plendxnn 13236 dsndxnn 13251 unifndxnn 13261 rmodislmodlem 14314 rmodislmod 14315 cndsex 14517 znval 14600 znle 14601 znbaslemnn 14603 znbas 14608 znzrhval 14611 psrval 14630 fczpsrbag 14635 setsmsbasg 15153 cnbl0 15208 cnopncntop 15218 cnopn 15219 remet 15222 divcnap 15239 expcn 15243 climcncf 15258 idcncf 15275 expcncf 15283 cnrehmeocntop 15284 hovercncf 15320 plyrecj 15437 sincn 15443 coscn 15444 2logb9irrALT 15648 2irrexpq 15650 2irrexpqap 15652 lgslem4 15682 lgsdir2lem2 15708 edgfndxnn 15809 setsvtx 15852 usgrstrrepeen 16029 bdinex2 16263 bj-inex 16270 012of 16357 2o01f 16358 peano3nninf 16373 cvgcmp2nlemabs 16400 trilpolemisumle 16406 |
| Copyright terms: Public domain | W3C validator |