| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltr.1 |
|
| eqeltr.2 |
|
| Ref | Expression |
|---|---|
| eqeltri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltr.2 |
. 2
| |
| 2 | eqeltr.1 |
. . 3
| |
| 3 | 2 | eleq1i 2271 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: eqeltrri 2279 3eltr4i 2287 intab 3914 inex2 4179 vpwex 4223 ord3ex 4234 uniopel 4301 onsucelsucexmid 4578 nnpredcl 4671 elvvuni 4739 isarep2 5361 acexmidlemcase 5939 abrexex2 6209 oprabex 6213 oprabrexex2 6215 mpoexw 6299 rdg0 6473 frecex 6480 1on 6509 2on 6511 3on 6513 4on 6514 1onn 6606 2onn 6607 3onn 6608 4onn 6609 mapsnf1o2 6783 exmidpw 7005 exmidpw2en 7009 unfiexmid 7015 xpfi 7029 ssfirab 7033 fnfi 7038 iunfidisj 7048 fidcenumlemr 7057 sbthlemi10 7068 ctmlemr 7210 nninfex 7223 exmidonfinlem 7301 acfun 7319 exmidaclem 7320 pw1ne1 7341 ccfunen 7376 nqex 7476 nq0ex 7553 1pr 7667 ltexprlempr 7721 recexprlempr 7745 cauappcvgprlemcl 7766 caucvgprlemcl 7789 caucvgprprlemcl 7817 addvalex 7957 peano1nnnn 7965 peano2nnnn 7966 axcnex 7972 ax1cn 7974 ax1re 7975 pnfxr 8125 mnfxr 8129 inelr 8657 cju 9034 2re 9106 3re 9110 4re 9113 5re 9115 6re 9117 7re 9119 8re 9121 9re 9123 2nn 9198 3nn 9199 4nn 9200 5nn 9201 6nn 9202 7nn 9203 8nn 9204 9nn 9205 nn0ex 9301 nneoor 9475 zeo 9478 deccl 9518 decnncl 9523 numnncl2 9526 decnncl2 9527 numsucc 9543 numma2c 9549 numadd 9550 numaddc 9551 nummul1c 9552 nummul2c 9553 xnegcl 9954 xrex 9978 ioof 10093 uzennn 10581 xnn0nnen 10582 seqex 10594 m1expcl2 10706 faccl 10880 facwordi 10885 faclbnd2 10887 bccl 10912 crre 11168 remim 11171 absval 11312 climle 11645 climcvg1nlem 11660 iserabs 11786 geo2lim 11827 prodfclim1 11855 fprodle 11951 ere 11981 ege2le3 11982 eftlub 12001 efsep 12002 tan0 12042 ef01bndlem 12067 nn0o 12218 pczpre 12620 pockthi 12681 igz 12697 ennnfonelemj0 12772 ennnfonelem0 12776 ndxarg 12855 ndxslid 12857 strndxid 12860 basendxnn 12888 strle1g 12938 plusgndxnn 12943 2strbasg 12952 2stropg 12953 tsetndxnn 13021 plendxnn 13035 dsndxnn 13050 unifndxnn 13060 rmodislmodlem 14112 rmodislmod 14113 cndsex 14315 znval 14398 znle 14399 znbaslemnn 14401 znbas 14406 znzrhval 14409 psrval 14428 fczpsrbag 14433 setsmsbasg 14951 cnbl0 15006 cnopncntop 15016 cnopn 15017 remet 15020 divcnap 15037 expcn 15041 climcncf 15056 idcncf 15073 expcncf 15081 cnrehmeocntop 15082 hovercncf 15118 plyrecj 15235 sincn 15241 coscn 15242 2logb9irrALT 15446 2irrexpq 15448 2irrexpqap 15450 lgslem4 15480 lgsdir2lem2 15506 edgfndxnn 15607 bdinex2 15836 bj-inex 15843 012of 15930 2o01f 15931 peano3nninf 15944 cvgcmp2nlemabs 15971 trilpolemisumle 15977 |
| Copyright terms: Public domain | W3C validator |