Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltri | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltr.1 | |
eqeltr.2 |
Ref | Expression |
---|---|
eqeltri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltr.2 | . 2 | |
2 | eqeltr.1 | . . 3 | |
3 | 2 | eleq1i 2220 | . 2 |
4 | 1, 3 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1332 wcel 2125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-ial 1511 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-cleq 2147 df-clel 2150 |
This theorem is referenced by: eqeltrri 2228 3eltr4i 2236 intab 3832 inex2 4095 vpwex 4135 ord3ex 4146 uniopel 4211 onsucelsucexmid 4483 nnpredcl 4576 elvvuni 4643 isarep2 5250 acexmidlemcase 5809 abrexex2 6062 oprabex 6066 oprabrexex2 6068 rdg0 6324 frecex 6331 1on 6360 2on 6362 3on 6364 4on 6365 1onn 6456 2onn 6457 3onn 6458 4onn 6459 mapsnf1o2 6630 exmidpw 6842 unfiexmid 6851 xpfi 6863 ssfirab 6867 fnfi 6870 iunfidisj 6879 fidcenumlemr 6888 sbthlemi10 6899 ctmlemr 7038 nninfex 7051 exmidonfinlem 7107 acfun 7121 exmidaclem 7122 pw1ne1 7143 ccfunen 7163 nqex 7262 nq0ex 7339 1pr 7453 ltexprlempr 7507 recexprlempr 7531 cauappcvgprlemcl 7552 caucvgprlemcl 7575 caucvgprprlemcl 7603 addvalex 7743 peano1nnnn 7751 peano2nnnn 7752 axcnex 7758 ax1cn 7760 ax1re 7761 pnfxr 7909 mnfxr 7913 inelr 8438 cju 8811 2re 8882 3re 8886 4re 8889 5re 8891 6re 8893 7re 8895 8re 8897 9re 8899 2nn 8973 3nn 8974 4nn 8975 5nn 8976 6nn 8977 7nn 8978 8nn 8979 9nn 8980 nn0ex 9075 nneoor 9245 zeo 9248 deccl 9288 decnncl 9293 numnncl2 9296 decnncl2 9297 numsucc 9313 numma2c 9319 numadd 9320 numaddc 9321 nummul1c 9322 nummul2c 9323 xnegcl 9714 xrex 9738 ioof 9853 uzennn 10313 seqex 10324 m1expcl2 10419 faccl 10586 facwordi 10591 faclbnd2 10593 bccl 10618 crre 10734 remim 10737 absval 10878 climle 11208 climcvg1nlem 11223 iserabs 11349 geo2lim 11390 prodfclim1 11418 fprodle 11514 ere 11544 ege2le3 11545 eftlub 11564 efsep 11565 tan0 11605 ef01bndlem 11630 nn0o 11771 ennnfonelemj0 12081 ennnfonelem0 12085 ndxarg 12152 ndxslid 12154 strndxid 12157 basendxnn 12184 strle1g 12219 2strbasg 12230 2stropg 12231 setsmsbasg 12818 cnbl0 12873 cnopncntop 12876 remet 12879 divcnap 12894 climcncf 12910 expcncf 12931 cnrehmeocntop 12932 sincn 13029 coscn 13030 2logb9irrALT 13230 2irrexpq 13232 2irrexpqap 13234 bdinex2 13413 bj-inex 13420 012of 13506 2o01f 13507 peano3nninf 13519 cvgcmp2nlemabs 13544 trilpolemisumle 13550 |
Copyright terms: Public domain | W3C validator |