| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeltr.1 |
|
| eqeltr.2 |
|
| Ref | Expression |
|---|---|
| eqeltri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltr.2 |
. 2
| |
| 2 | eqeltr.1 |
. . 3
| |
| 3 | 2 | eleq1i 2273 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: eqeltrri 2281 3eltr4i 2289 intab 3928 inex2 4195 vpwex 4239 ord3ex 4250 uniopel 4319 onsucelsucexmid 4596 nnpredcl 4689 elvvuni 4757 isarep2 5380 acexmidlemcase 5962 abrexex2 6232 oprabex 6236 oprabrexex2 6238 mpoexw 6322 rdg0 6496 frecex 6503 1on 6532 2on 6534 3on 6536 4on 6537 1onn 6629 2onn 6630 3onn 6631 4onn 6632 mapsnf1o2 6806 exmidpw 7031 exmidpw2en 7035 unfiexmid 7041 xpfi 7055 ssfirab 7059 fnfi 7064 iunfidisj 7074 fidcenumlemr 7083 sbthlemi10 7094 ctmlemr 7236 nninfex 7249 exmidonfinlem 7332 acfun 7350 exmidaclem 7351 pw1ne1 7375 ccfunen 7411 nqex 7511 nq0ex 7588 1pr 7702 ltexprlempr 7756 recexprlempr 7780 cauappcvgprlemcl 7801 caucvgprlemcl 7824 caucvgprprlemcl 7852 addvalex 7992 peano1nnnn 8000 peano2nnnn 8001 axcnex 8007 ax1cn 8009 ax1re 8010 pnfxr 8160 mnfxr 8164 inelr 8692 cju 9069 2re 9141 3re 9145 4re 9148 5re 9150 6re 9152 7re 9154 8re 9156 9re 9158 2nn 9233 3nn 9234 4nn 9235 5nn 9236 6nn 9237 7nn 9238 8nn 9239 9nn 9240 nn0ex 9336 nneoor 9510 zeo 9513 deccl 9553 decnncl 9558 numnncl2 9561 decnncl2 9562 numsucc 9578 numma2c 9584 numadd 9585 numaddc 9586 nummul1c 9587 nummul2c 9588 xnegcl 9989 xrex 10013 ioof 10128 uzennn 10618 xnn0nnen 10619 seqex 10631 m1expcl2 10743 faccl 10917 facwordi 10922 faclbnd2 10924 bccl 10949 lswex 11082 crre 11283 remim 11286 absval 11427 climle 11760 climcvg1nlem 11775 iserabs 11901 geo2lim 11942 prodfclim1 11970 fprodle 12066 ere 12096 ege2le3 12097 eftlub 12116 efsep 12117 tan0 12157 ef01bndlem 12182 nn0o 12333 pczpre 12735 pockthi 12796 igz 12812 ennnfonelemj0 12887 ennnfonelem0 12891 ndxarg 12970 ndxslid 12972 strndxid 12975 basendxnn 13003 strle1g 13053 plusgndxnn 13058 2strbasg 13067 2stropg 13068 tsetndxnn 13136 plendxnn 13150 dsndxnn 13165 unifndxnn 13175 rmodislmodlem 14227 rmodislmod 14228 cndsex 14430 znval 14513 znle 14514 znbaslemnn 14516 znbas 14521 znzrhval 14524 psrval 14543 fczpsrbag 14548 setsmsbasg 15066 cnbl0 15121 cnopncntop 15131 cnopn 15132 remet 15135 divcnap 15152 expcn 15156 climcncf 15171 idcncf 15188 expcncf 15196 cnrehmeocntop 15197 hovercncf 15233 plyrecj 15350 sincn 15356 coscn 15357 2logb9irrALT 15561 2irrexpq 15563 2irrexpqap 15565 lgslem4 15595 lgsdir2lem2 15621 edgfndxnn 15722 bdinex2 16035 bj-inex 16042 012of 16130 2o01f 16131 peano3nninf 16146 cvgcmp2nlemabs 16173 trilpolemisumle 16179 |
| Copyright terms: Public domain | W3C validator |