| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqeltri | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| eqeltr.1 | 
 | 
| eqeltr.2 | 
 | 
| Ref | Expression | 
|---|---|
| eqeltri | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeltr.2 | 
. 2
 | |
| 2 | eqeltr.1 | 
. . 3
 | |
| 3 | 2 | eleq1i 2262 | 
. 2
 | 
| 4 | 1, 3 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: eqeltrri 2270 3eltr4i 2278 intab 3903 inex2 4168 vpwex 4212 ord3ex 4223 uniopel 4289 onsucelsucexmid 4566 nnpredcl 4659 elvvuni 4727 isarep2 5345 acexmidlemcase 5917 abrexex2 6181 oprabex 6185 oprabrexex2 6187 mpoexw 6271 rdg0 6445 frecex 6452 1on 6481 2on 6483 3on 6485 4on 6486 1onn 6578 2onn 6579 3onn 6580 4onn 6581 mapsnf1o2 6755 exmidpw 6969 exmidpw2en 6973 unfiexmid 6979 xpfi 6993 ssfirab 6997 fnfi 7002 iunfidisj 7012 fidcenumlemr 7021 sbthlemi10 7032 ctmlemr 7174 nninfex 7187 exmidonfinlem 7260 acfun 7274 exmidaclem 7275 pw1ne1 7296 ccfunen 7331 nqex 7430 nq0ex 7507 1pr 7621 ltexprlempr 7675 recexprlempr 7699 cauappcvgprlemcl 7720 caucvgprlemcl 7743 caucvgprprlemcl 7771 addvalex 7911 peano1nnnn 7919 peano2nnnn 7920 axcnex 7926 ax1cn 7928 ax1re 7929 pnfxr 8079 mnfxr 8083 inelr 8611 cju 8988 2re 9060 3re 9064 4re 9067 5re 9069 6re 9071 7re 9073 8re 9075 9re 9077 2nn 9152 3nn 9153 4nn 9154 5nn 9155 6nn 9156 7nn 9157 8nn 9158 9nn 9159 nn0ex 9255 nneoor 9428 zeo 9431 deccl 9471 decnncl 9476 numnncl2 9479 decnncl2 9480 numsucc 9496 numma2c 9502 numadd 9503 numaddc 9504 nummul1c 9505 nummul2c 9506 xnegcl 9907 xrex 9931 ioof 10046 uzennn 10528 xnn0nnen 10529 seqex 10541 m1expcl2 10653 faccl 10827 facwordi 10832 faclbnd2 10834 bccl 10859 crre 11022 remim 11025 absval 11166 climle 11499 climcvg1nlem 11514 iserabs 11640 geo2lim 11681 prodfclim1 11709 fprodle 11805 ere 11835 ege2le3 11836 eftlub 11855 efsep 11856 tan0 11896 ef01bndlem 11921 nn0o 12072 pczpre 12466 pockthi 12527 igz 12543 ennnfonelemj0 12618 ennnfonelem0 12622 ndxarg 12701 ndxslid 12703 strndxid 12706 basendxnn 12734 strle1g 12784 plusgndxnn 12789 2strbasg 12797 2stropg 12798 tsetndxnn 12866 plendxnn 12880 dsndxnn 12891 unifndxnn 12901 rmodislmodlem 13906 rmodislmod 13907 cndsex 14109 znval 14192 znle 14193 znbaslemnn 14195 znbas 14200 znzrhval 14203 psrval 14220 fczpsrbag 14225 setsmsbasg 14715 cnbl0 14770 cnopncntop 14780 cnopn 14781 remet 14784 divcnap 14801 expcn 14805 climcncf 14820 idcncf 14837 expcncf 14845 cnrehmeocntop 14846 hovercncf 14882 plyrecj 14999 sincn 15005 coscn 15006 2logb9irrALT 15210 2irrexpq 15212 2irrexpqap 15214 lgslem4 15244 lgsdir2lem2 15270 bdinex2 15546 bj-inex 15553 012of 15640 2o01f 15641 peano3nninf 15651 cvgcmp2nlemabs 15676 trilpolemisumle 15682 | 
| Copyright terms: Public domain | W3C validator |