![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdinex2 | GIF version |
Description: Bounded version of inex2 4140. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdinex2.bd | ⊢ BOUNDED 𝐵 |
bdinex2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bdinex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3329 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | bdinex2.bd | . . 3 ⊢ BOUNDED 𝐵 | |
3 | bdinex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 2, 3 | bdinex1 14791 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
5 | 1, 4 | eqeltri 2250 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 Vcvv 2739 ∩ cin 3130 BOUNDED wbdc 14732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-bdsep 14776 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-in 3137 df-bdc 14733 |
This theorem is referenced by: bdssex 14794 |
Copyright terms: Public domain | W3C validator |