Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex2 GIF version

Theorem bdinex2 15005
Description: Bounded version of inex2 4150. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex2.bd BOUNDED 𝐵
bdinex2.1 𝐴 ∈ V
Assertion
Ref Expression
bdinex2 (𝐵𝐴) ∈ V

Proof of Theorem bdinex2
StepHypRef Expression
1 incom 3339 . 2 (𝐵𝐴) = (𝐴𝐵)
2 bdinex2.bd . . 3 BOUNDED 𝐵
3 bdinex2.1 . . 3 𝐴 ∈ V
42, 3bdinex1 15004 . 2 (𝐴𝐵) ∈ V
51, 4eqeltri 2260 1 (𝐵𝐴) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2158  Vcvv 2749  cin 3140  BOUNDED wbdc 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-bdsep 14989
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-in 3147  df-bdc 14946
This theorem is referenced by:  bdssex  15007
  Copyright terms: Public domain W3C validator