![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdinex2 | GIF version |
Description: Bounded version of inex2 4150. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdinex2.bd | ⊢ BOUNDED 𝐵 |
bdinex2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bdinex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3339 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | bdinex2.bd | . . 3 ⊢ BOUNDED 𝐵 | |
3 | bdinex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 2, 3 | bdinex1 15004 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
5 | 1, 4 | eqeltri 2260 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2158 Vcvv 2749 ∩ cin 3140 BOUNDED wbdc 14945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-bdsep 14989 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-in 3147 df-bdc 14946 |
This theorem is referenced by: bdssex 15007 |
Copyright terms: Public domain | W3C validator |