Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex2 GIF version

Theorem bdinex2 15836
Description: Bounded version of inex2 4179. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex2.bd BOUNDED 𝐵
bdinex2.1 𝐴 ∈ V
Assertion
Ref Expression
bdinex2 (𝐵𝐴) ∈ V

Proof of Theorem bdinex2
StepHypRef Expression
1 incom 3365 . 2 (𝐵𝐴) = (𝐴𝐵)
2 bdinex2.bd . . 3 BOUNDED 𝐵
3 bdinex2.1 . . 3 𝐴 ∈ V
42, 3bdinex1 15835 . 2 (𝐴𝐵) ∈ V
51, 4eqeltri 2278 1 (𝐵𝐴) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2176  Vcvv 2772  cin 3165  BOUNDED wbdc 15776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-bdsep 15820
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-bdc 15777
This theorem is referenced by:  bdssex  15838
  Copyright terms: Public domain W3C validator