ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inex2 Unicode version

Theorem inex2 4153
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
inex2.1  |-  A  e. 
_V
Assertion
Ref Expression
inex2  |-  ( B  i^i  A )  e. 
_V

Proof of Theorem inex2
StepHypRef Expression
1 incom 3342 . 2  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2 inex2.1 . . 3  |-  A  e. 
_V
32inex1 4152 . 2  |-  ( A  i^i  B )  e. 
_V
41, 3eqeltri 2262 1  |-  ( B  i^i  A )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   _Vcvv 2752    i^i cin 3143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150
This theorem is referenced by:  ssex  4155  peano5nnnn  7921  peano5nni  8952  tgdom  14032  distop  14045
  Copyright terms: Public domain W3C validator