ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inex2 Unicode version

Theorem inex2 4124
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
inex2.1  |-  A  e. 
_V
Assertion
Ref Expression
inex2  |-  ( B  i^i  A )  e. 
_V

Proof of Theorem inex2
StepHypRef Expression
1 incom 3319 . 2  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2 inex2.1 . . 3  |-  A  e. 
_V
32inex1 4123 . 2  |-  ( A  i^i  B )  e. 
_V
41, 3eqeltri 2243 1  |-  ( B  i^i  A )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   _Vcvv 2730    i^i cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127
This theorem is referenced by:  ssex  4126  peano5nnnn  7854  peano5nni  8881  tgdom  12866  distop  12879
  Copyright terms: Public domain W3C validator