Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  inex2 Unicode version

Theorem inex2 3980
 Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
inex2.1
Assertion
Ref Expression
inex2

Proof of Theorem inex2
StepHypRef Expression
1 incom 3193 . 2
2 inex2.1 . . 3
32inex1 3979 . 2
41, 3eqeltri 2161 1
 Colors of variables: wff set class Syntax hints:   wcel 1439  cvv 2620   cin 2999 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963 This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-in 3006 This theorem is referenced by:  ssex  3982  peano5nnnn  7488  peano5nni  8486  tgdom  11833  distop  11846
 Copyright terms: Public domain W3C validator