ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inex2 Unicode version

Theorem inex2 4117
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
inex2.1  |-  A  e. 
_V
Assertion
Ref Expression
inex2  |-  ( B  i^i  A )  e. 
_V

Proof of Theorem inex2
StepHypRef Expression
1 incom 3314 . 2  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2 inex2.1 . . 3  |-  A  e. 
_V
32inex1 4116 . 2  |-  ( A  i^i  B )  e. 
_V
41, 3eqeltri 2239 1  |-  ( B  i^i  A )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726    i^i cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122
This theorem is referenced by:  ssex  4119  peano5nnnn  7833  peano5nni  8860  tgdom  12712  distop  12725
  Copyright terms: Public domain W3C validator