ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfzo12 Unicode version

Theorem ssfzo12 9994
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.)
Assertion
Ref Expression
ssfzo12  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  ->  ( M  <_  K  /\  L  <_  N ) ) )

Proof of Theorem ssfzo12
StepHypRef Expression
1 fzolb2 9924 . . 3  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( K  e.  ( K..^ L )  <->  K  <  L ) )
21biimp3ar 1324 . 2  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  ->  K  e.  ( K..^ L ) )
3 fzoend 9992 . . 3  |-  ( K  e.  ( K..^ L
)  ->  ( L  -  1 )  e.  ( K..^ L ) )
4 ssel2 3087 . . . . . . 7  |-  ( ( ( K..^ L ) 
C_  ( M..^ N
)  /\  K  e.  ( K..^ L ) )  ->  K  e.  ( M..^ N ) )
5 ssel2 3087 . . . . . . . . . 10  |-  ( ( ( K..^ L ) 
C_  ( M..^ N
)  /\  ( L  -  1 )  e.  ( K..^ L ) )  ->  ( L  -  1 )  e.  ( M..^ N ) )
6 elfzolt2 9926 . . . . . . . . . 10  |-  ( ( L  -  1 )  e.  ( M..^ N
)  ->  ( L  -  1 )  < 
N )
7 simp2 982 . . . . . . . . . . . . . 14  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  ->  L  e.  ZZ )
8 elfzoel2 9916 . . . . . . . . . . . . . 14  |-  ( K  e.  ( M..^ N
)  ->  N  e.  ZZ )
9 zlem1lt 9103 . . . . . . . . . . . . . 14  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( L  <_  N  <->  ( L  -  1 )  <  N ) )
107, 8, 9syl2anr 288 . . . . . . . . . . . . 13  |-  ( ( K  e.  ( M..^ N )  /\  ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L ) )  -> 
( L  <_  N  <->  ( L  -  1 )  <  N ) )
11 elfzole1 9925 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( M..^ N
)  ->  M  <_  K )
12 pm3.2 138 . . . . . . . . . . . . . . 15  |-  ( M  <_  K  ->  ( L  <_  N  ->  ( M  <_  K  /\  L  <_  N ) ) )
1311, 12syl 14 . . . . . . . . . . . . . 14  |-  ( K  e.  ( M..^ N
)  ->  ( L  <_  N  ->  ( M  <_  K  /\  L  <_  N ) ) )
1413adantr 274 . . . . . . . . . . . . 13  |-  ( ( K  e.  ( M..^ N )  /\  ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L ) )  -> 
( L  <_  N  ->  ( M  <_  K  /\  L  <_  N ) ) )
1510, 14sylbird 169 . . . . . . . . . . . 12  |-  ( ( K  e.  ( M..^ N )  /\  ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L ) )  -> 
( ( L  - 
1 )  <  N  ->  ( M  <_  K  /\  L  <_  N ) ) )
1615ex 114 . . . . . . . . . . 11  |-  ( K  e.  ( M..^ N
)  ->  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L )  ->  (
( L  -  1 )  <  N  -> 
( M  <_  K  /\  L  <_  N ) ) ) )
1716com13 80 . . . . . . . . . 10  |-  ( ( L  -  1 )  <  N  ->  (
( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  -> 
( K  e.  ( M..^ N )  -> 
( M  <_  K  /\  L  <_  N ) ) ) )
185, 6, 173syl 17 . . . . . . . . 9  |-  ( ( ( K..^ L ) 
C_  ( M..^ N
)  /\  ( L  -  1 )  e.  ( K..^ L ) )  ->  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L )  ->  ( K  e.  ( M..^ N )  ->  ( M  <_  K  /\  L  <_  N ) ) ) )
1918ex 114 . . . . . . . 8  |-  ( ( K..^ L )  C_  ( M..^ N )  -> 
( ( L  - 
1 )  e.  ( K..^ L )  -> 
( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L )  ->  ( K  e.  ( M..^ N )  ->  ( M  <_  K  /\  L  <_  N ) ) ) ) )
2019com24 87 . . . . . . 7  |-  ( ( K..^ L )  C_  ( M..^ N )  -> 
( K  e.  ( M..^ N )  -> 
( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L )  ->  (
( L  -  1 )  e.  ( K..^ L )  ->  ( M  <_  K  /\  L  <_  N ) ) ) ) )
214, 20syl5com 29 . . . . . 6  |-  ( ( ( K..^ L ) 
C_  ( M..^ N
)  /\  K  e.  ( K..^ L ) )  ->  ( ( K..^ L )  C_  ( M..^ N )  ->  (
( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  -> 
( ( L  - 
1 )  e.  ( K..^ L )  -> 
( M  <_  K  /\  L  <_  N ) ) ) ) )
2221ex 114 . . . . 5  |-  ( ( K..^ L )  C_  ( M..^ N )  -> 
( K  e.  ( K..^ L )  -> 
( ( K..^ L
)  C_  ( M..^ N )  ->  (
( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  -> 
( ( L  - 
1 )  e.  ( K..^ L )  -> 
( M  <_  K  /\  L  <_  N ) ) ) ) ) )
2322pm2.43a 51 . . . 4  |-  ( ( K..^ L )  C_  ( M..^ N )  -> 
( K  e.  ( K..^ L )  -> 
( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L )  ->  (
( L  -  1 )  e.  ( K..^ L )  ->  ( M  <_  K  /\  L  <_  N ) ) ) ) )
2423com14 88 . . 3  |-  ( ( L  -  1 )  e.  ( K..^ L
)  ->  ( K  e.  ( K..^ L )  ->  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  ->  ( M  <_  K  /\  L  <_  N ) ) ) ) )
253, 24mpcom 36 . 2  |-  ( K  e.  ( K..^ L
)  ->  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  < 
L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  ->  ( M  <_  K  /\  L  <_  N ) ) ) )
262, 25mpcom 36 1  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ  /\  K  <  L )  ->  (
( K..^ L ) 
C_  ( M..^ N
)  ->  ( M  <_  K  /\  L  <_  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480    C_ wss 3066   class class class wbr 3924  (class class class)co 5767   1c1 7614    < clt 7793    <_ cle 7794    - cmin 7926   ZZcz 9047  ..^cfzo 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-fzo 9913
This theorem is referenced by:  ssfzo12bi  9995
  Copyright terms: Public domain W3C validator