| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | Unicode version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 |
|
| Ref | Expression |
|---|---|
| biimp3a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 |
. . 3
| |
| 2 | 1 | biimpa 296 |
. 2
|
| 3 | 2 | 3impa 1218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: nnawordex 6675 div2subap 8984 nn0addge1 9415 nn0addge2 9416 nn0sub2 9520 eluzp1p1 9748 uznn0sub 9754 iocssre 10149 icossre 10150 iccssre 10151 lincmb01cmp 10199 iccf1o 10200 fzosplitprm1 10440 subfzo0 10448 modfzo0difsn 10617 pfxpfx 11240 efltim 12209 fldivndvdslt 12448 prmdiv 12757 hashgcdlem 12760 vfermltl 12774 coprimeprodsq 12780 pythagtrip 12806 difsqpwdvds 12861 tgtop11 14750 sinq12gt0 15504 gausslemma2dlem1a 15737 |
| Copyright terms: Public domain | W3C validator |