| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | Unicode version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 |
|
| Ref | Expression |
|---|---|
| biimp3a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 |
. . 3
| |
| 2 | 1 | biimpa 296 |
. 2
|
| 3 | 2 | 3impa 1197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: nnawordex 6617 div2subap 8912 nn0addge1 9343 nn0addge2 9344 nn0sub2 9448 eluzp1p1 9676 uznn0sub 9682 iocssre 10077 icossre 10078 iccssre 10079 lincmb01cmp 10127 iccf1o 10128 fzosplitprm1 10365 subfzo0 10373 modfzo0difsn 10542 efltim 12042 fldivndvdslt 12281 prmdiv 12590 hashgcdlem 12593 vfermltl 12607 coprimeprodsq 12613 pythagtrip 12639 difsqpwdvds 12694 tgtop11 14581 sinq12gt0 15335 gausslemma2dlem1a 15568 |
| Copyright terms: Public domain | W3C validator |