| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | Unicode version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 |
|
| Ref | Expression |
|---|---|
| biimp3a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 |
. . 3
| |
| 2 | 1 | biimpa 296 |
. 2
|
| 3 | 2 | 3impa 1197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: nnawordex 6638 div2subap 8945 nn0addge1 9376 nn0addge2 9377 nn0sub2 9481 eluzp1p1 9709 uznn0sub 9715 iocssre 10110 icossre 10111 iccssre 10112 lincmb01cmp 10160 iccf1o 10161 fzosplitprm1 10400 subfzo0 10408 modfzo0difsn 10577 pfxpfx 11199 efltim 12124 fldivndvdslt 12363 prmdiv 12672 hashgcdlem 12675 vfermltl 12689 coprimeprodsq 12695 pythagtrip 12721 difsqpwdvds 12776 tgtop11 14663 sinq12gt0 15417 gausslemma2dlem1a 15650 |
| Copyright terms: Public domain | W3C validator |