ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimp3a Unicode version

Theorem biimp3a 1340
Description: Infer implication from a logical equivalence. Similar to biimpa 294. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
biimp3a.1  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
Assertion
Ref Expression
biimp3a  |-  ( (
ph  /\  ps  /\  ch )  ->  th )

Proof of Theorem biimp3a
StepHypRef Expression
1 biimp3a.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
21biimpa 294 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
323impa 1189 1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  nnawordex  6508  div2subap  8754  nn0addge1  9181  nn0addge2  9182  nn0sub2  9285  eluzp1p1  9512  uznn0sub  9518  iocssre  9910  icossre  9911  iccssre  9912  lincmb01cmp  9960  iccf1o  9961  fzosplitprm1  10190  subfzo0  10198  modfzo0difsn  10351  efltim  11661  fldivndvdslt  11894  prmdiv  12189  hashgcdlem  12192  vfermltl  12205  coprimeprodsq  12211  pythagtrip  12237  difsqpwdvds  12291  tgtop11  12870  sinq12gt0  13545
  Copyright terms: Public domain W3C validator