ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimp3a Unicode version

Theorem biimp3a 1356
Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
biimp3a.1  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
Assertion
Ref Expression
biimp3a  |-  ( (
ph  /\  ps  /\  ch )  ->  th )

Proof of Theorem biimp3a
StepHypRef Expression
1 biimp3a.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
21biimpa 296 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
323impa 1196 1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  nnawordex  6587  div2subap  8864  nn0addge1  9295  nn0addge2  9296  nn0sub2  9399  eluzp1p1  9627  uznn0sub  9633  iocssre  10028  icossre  10029  iccssre  10030  lincmb01cmp  10078  iccf1o  10079  fzosplitprm1  10310  subfzo0  10318  modfzo0difsn  10487  efltim  11863  fldivndvdslt  12102  prmdiv  12403  hashgcdlem  12406  vfermltl  12420  coprimeprodsq  12426  pythagtrip  12452  difsqpwdvds  12507  tgtop11  14312  sinq12gt0  15066  gausslemma2dlem1a  15299
  Copyright terms: Public domain W3C validator