![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimp3a | Unicode version |
Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
biimp3a.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimp3a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpa 296 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 3impa 1195 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 981 |
This theorem is referenced by: nnawordex 6543 div2subap 8807 nn0addge1 9235 nn0addge2 9236 nn0sub2 9339 eluzp1p1 9566 uznn0sub 9572 iocssre 9966 icossre 9967 iccssre 9968 lincmb01cmp 10016 iccf1o 10017 fzosplitprm1 10247 subfzo0 10255 modfzo0difsn 10408 efltim 11719 fldivndvdslt 11953 prmdiv 12248 hashgcdlem 12251 vfermltl 12264 coprimeprodsq 12270 pythagtrip 12296 difsqpwdvds 12350 tgtop11 13847 sinq12gt0 14522 |
Copyright terms: Public domain | W3C validator |