| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | Unicode version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 |
|
| Ref | Expression |
|---|---|
| biimp3a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 |
. . 3
| |
| 2 | 1 | biimpa 296 |
. 2
|
| 3 | 2 | 3impa 1197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: nnawordex 6615 div2subap 8910 nn0addge1 9341 nn0addge2 9342 nn0sub2 9446 eluzp1p1 9674 uznn0sub 9680 iocssre 10075 icossre 10076 iccssre 10077 lincmb01cmp 10125 iccf1o 10126 fzosplitprm1 10363 subfzo0 10371 modfzo0difsn 10540 efltim 12009 fldivndvdslt 12248 prmdiv 12557 hashgcdlem 12560 vfermltl 12574 coprimeprodsq 12580 pythagtrip 12606 difsqpwdvds 12661 tgtop11 14548 sinq12gt0 15302 gausslemma2dlem1a 15535 |
| Copyright terms: Public domain | W3C validator |