| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | Unicode version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 |
|
| Ref | Expression |
|---|---|
| biimp3a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 |
. . 3
| |
| 2 | 1 | biimpa 296 |
. 2
|
| 3 | 2 | 3impa 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: nnawordex 6587 div2subap 8864 nn0addge1 9295 nn0addge2 9296 nn0sub2 9399 eluzp1p1 9627 uznn0sub 9633 iocssre 10028 icossre 10029 iccssre 10030 lincmb01cmp 10078 iccf1o 10079 fzosplitprm1 10310 subfzo0 10318 modfzo0difsn 10487 efltim 11863 fldivndvdslt 12102 prmdiv 12403 hashgcdlem 12406 vfermltl 12420 coprimeprodsq 12426 pythagtrip 12452 difsqpwdvds 12507 tgtop11 14312 sinq12gt0 15066 gausslemma2dlem1a 15299 |
| Copyright terms: Public domain | W3C validator |