| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp3a | Unicode version | ||
| Description: Infer implication from a logical equivalence. Similar to biimpa 296. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| biimp3a.1 |
|
| Ref | Expression |
|---|---|
| biimp3a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp3a.1 |
. . 3
| |
| 2 | 1 | biimpa 296 |
. 2
|
| 3 | 2 | 3impa 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: nnawordex 6589 div2subap 8867 nn0addge1 9298 nn0addge2 9299 nn0sub2 9402 eluzp1p1 9630 uznn0sub 9636 iocssre 10031 icossre 10032 iccssre 10033 lincmb01cmp 10081 iccf1o 10082 fzosplitprm1 10313 subfzo0 10321 modfzo0difsn 10490 efltim 11866 fldivndvdslt 12105 prmdiv 12414 hashgcdlem 12417 vfermltl 12431 coprimeprodsq 12437 pythagtrip 12463 difsqpwdvds 12518 tgtop11 14338 sinq12gt0 15092 gausslemma2dlem1a 15325 |
| Copyright terms: Public domain | W3C validator |