Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimp3a | Unicode version |
Description: Infer implication from a logical equivalence. Similar to biimpa 294. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
biimp3a.1 |
Ref | Expression |
---|---|
biimp3a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 | . . 3 | |
2 | 1 | biimpa 294 | . 2 |
3 | 2 | 3impa 1189 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: nnawordex 6508 div2subap 8754 nn0addge1 9181 nn0addge2 9182 nn0sub2 9285 eluzp1p1 9512 uznn0sub 9518 iocssre 9910 icossre 9911 iccssre 9912 lincmb01cmp 9960 iccf1o 9961 fzosplitprm1 10190 subfzo0 10198 modfzo0difsn 10351 efltim 11661 fldivndvdslt 11894 prmdiv 12189 hashgcdlem 12192 vfermltl 12205 coprimeprodsq 12211 pythagtrip 12237 difsqpwdvds 12291 tgtop11 12870 sinq12gt0 13545 |
Copyright terms: Public domain | W3C validator |