![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimp3a | Unicode version |
Description: Infer implication from a logical equivalence. Similar to biimpa 290. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
biimp3a.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimp3a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp3a.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpa 290 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 3impa 1138 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-3an 926 |
This theorem is referenced by: nnawordex 6287 div2subap 8302 nn0addge1 8719 nn0addge2 8720 nn0sub2 8820 eluzp1p1 9044 uznn0sub 9050 iocssre 9371 icossre 9372 iccssre 9373 lincmb01cmp 9420 iccf1o 9421 fzosplitprm1 9645 subfzo0 9653 modfzo0difsn 9802 efltim 10988 fldivndvdslt 11213 hashgcdlem 11481 |
Copyright terms: Public domain | W3C validator |