ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgssq Unicode version

Theorem lgssq 13696
Description: The Legendre symbol at a square is equal to  1. Together with lgsmod 13682 this implies that the Legendre symbol takes value  1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.)
Assertion
Ref Expression
lgssq  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A ^ 2 )  /L N )  =  1 )

Proof of Theorem lgssq
StepHypRef Expression
1 simp1l 1016 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  A  e.  ZZ )
2 simp2 993 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  N  e.  ZZ )
3 simp1r 1017 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  A  =/=  0
)
4 lgsdir 13691 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  A  =/=  0
) )  ->  (
( A  x.  A
)  /L N )  =  ( ( A  /L N )  x.  ( A  /L N ) ) )
51, 1, 2, 3, 3, 4syl32anc 1241 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A  x.  A )  /L N )  =  ( ( A  /L N )  x.  ( A  /L
N ) ) )
6 zcn 9206 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  CC )
76adantr 274 . . . . 5  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  ->  A  e.  CC )
873ad2ant1 1013 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  A  e.  CC )
98sqvald 10595 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( A ^
2 )  =  ( A  x.  A ) )
109oveq1d 5866 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A ^ 2 )  /L N )  =  ( ( A  x.  A )  /L
N ) )
11 lgscl 13670 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  ZZ )
121, 2, 11syl2anc 409 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( A  /L N )  e.  ZZ )
1312zred 9323 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( A  /L N )  e.  RR )
14 absresq 11031 . . . 4  |-  ( ( A  /L N )  e.  RR  ->  ( ( abs `  ( A  /L N ) ) ^ 2 )  =  ( ( A  /L N ) ^ 2 ) )
1513, 14syl 14 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( abs `  ( A  /L
N ) ) ^
2 )  =  ( ( A  /L
N ) ^ 2 ) )
16 lgsabs1 13695 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  ( A  gcd  N )  =  1 ) )
1716adantlr 474 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L
N ) )  =  1  <->  ( A  gcd  N )  =  1 ) )
1817biimp3ar 1341 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( abs `  ( A  /L N ) )  =  1 )
1918oveq1d 5866 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( abs `  ( A  /L
N ) ) ^
2 )  =  ( 1 ^ 2 ) )
20 sq1 10558 . . . 4  |-  ( 1 ^ 2 )  =  1
2119, 20eqtrdi 2219 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( abs `  ( A  /L
N ) ) ^
2 )  =  1 )
2212zcnd 9324 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( A  /L N )  e.  CC )
2322sqvald 10595 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A  /L N ) ^ 2 )  =  ( ( A  /L N )  x.  ( A  /L
N ) ) )
2415, 21, 233eqtr3d 2211 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  1  =  ( ( A  /L
N )  x.  ( A  /L N ) ) )
255, 10, 243eqtr4d 2213 1  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A ^ 2 )  /L N )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   ` cfv 5196  (class class class)co 5851   CCcc 7761   RRcr 7762   0cc0 7763   1c1 7764    x. cmul 7768   2c2 8918   ZZcz 9201   ^cexp 10464   abscabs 10950    gcd cgcd 11886    /Lclgs 13653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-2o 6394  df-oadd 6397  df-er 6510  df-en 6716  df-dom 6717  df-fin 6718  df-sup 6958  df-inf 6959  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-5 8929  df-6 8930  df-7 8931  df-8 8932  df-9 8933  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-fz 9955  df-fzo 10088  df-fl 10215  df-mod 10268  df-seqfrec 10391  df-exp 10465  df-ihash 10699  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-clim 11231  df-proddc 11503  df-dvds 11739  df-gcd 11887  df-prm 12051  df-phi 12154  df-pc 12228  df-lgs 13654
This theorem is referenced by:  1lgs  13699  lgsmulsqcoprm  13702
  Copyright terms: Public domain W3C validator