ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgssq Unicode version

Theorem lgssq 13735
Description: The Legendre symbol at a square is equal to  1. Together with lgsmod 13721 this implies that the Legendre symbol takes value  1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.)
Assertion
Ref Expression
lgssq  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A ^ 2 )  /L N )  =  1 )

Proof of Theorem lgssq
StepHypRef Expression
1 simp1l 1016 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  A  e.  ZZ )
2 simp2 993 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  N  e.  ZZ )
3 simp1r 1017 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  A  =/=  0
)
4 lgsdir 13730 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  A  =/=  0
) )  ->  (
( A  x.  A
)  /L N )  =  ( ( A  /L N )  x.  ( A  /L N ) ) )
51, 1, 2, 3, 3, 4syl32anc 1241 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A  x.  A )  /L N )  =  ( ( A  /L N )  x.  ( A  /L
N ) ) )
6 zcn 9217 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  CC )
76adantr 274 . . . . 5  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  ->  A  e.  CC )
873ad2ant1 1013 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  A  e.  CC )
98sqvald 10606 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( A ^
2 )  =  ( A  x.  A ) )
109oveq1d 5868 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A ^ 2 )  /L N )  =  ( ( A  x.  A )  /L
N ) )
11 lgscl 13709 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  ZZ )
121, 2, 11syl2anc 409 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( A  /L N )  e.  ZZ )
1312zred 9334 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( A  /L N )  e.  RR )
14 absresq 11042 . . . 4  |-  ( ( A  /L N )  e.  RR  ->  ( ( abs `  ( A  /L N ) ) ^ 2 )  =  ( ( A  /L N ) ^ 2 ) )
1513, 14syl 14 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( abs `  ( A  /L
N ) ) ^
2 )  =  ( ( A  /L
N ) ^ 2 ) )
16 lgsabs1 13734 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  ( A  gcd  N )  =  1 ) )
1716adantlr 474 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L
N ) )  =  1  <->  ( A  gcd  N )  =  1 ) )
1817biimp3ar 1341 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( abs `  ( A  /L N ) )  =  1 )
1918oveq1d 5868 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( abs `  ( A  /L
N ) ) ^
2 )  =  ( 1 ^ 2 ) )
20 sq1 10569 . . . 4  |-  ( 1 ^ 2 )  =  1
2119, 20eqtrdi 2219 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( abs `  ( A  /L
N ) ) ^
2 )  =  1 )
2212zcnd 9335 . . . 4  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( A  /L N )  e.  CC )
2322sqvald 10606 . . 3  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A  /L N ) ^ 2 )  =  ( ( A  /L N )  x.  ( A  /L
N ) ) )
2415, 21, 233eqtr3d 2211 . 2  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  1  =  ( ( A  /L
N )  x.  ( A  /L N ) ) )
255, 10, 243eqtr4d 2213 1  |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A  gcd  N
)  =  1 )  ->  ( ( A ^ 2 )  /L N )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    x. cmul 7779   2c2 8929   ZZcz 9212   ^cexp 10475   abscabs 10961    gcd cgcd 11897    /Lclgs 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-xor 1371  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-phi 12165  df-pc 12239  df-lgs 13693
This theorem is referenced by:  1lgs  13738  lgsmulsqcoprm  13741
  Copyright terms: Public domain W3C validator