ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  basgen2 Unicode version

Theorem basgen2 12280
Description: Given a topology  J, show that a subset  B satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
basgen2  |-  ( ( J  e.  Top  /\  B  C_  J  /\  A. x  e.  J  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) )  ->  ( topGen `  B
)  =  J )
Distinct variable groups:    x, y, z, B    x, J, y, z

Proof of Theorem basgen2
StepHypRef Expression
1 dfss3 3088 . . . 4  |-  ( J 
C_  ( topGen `  B
)  <->  A. x  e.  J  x  e.  ( topGen `  B ) )
2 ssexg 4071 . . . . . . 7  |-  ( ( B  C_  J  /\  J  e.  Top )  ->  B  e.  _V )
32ancoms 266 . . . . . 6  |-  ( ( J  e.  Top  /\  B  C_  J )  ->  B  e.  _V )
4 eltg2b 12253 . . . . . 6  |-  ( B  e.  _V  ->  (
x  e.  ( topGen `  B )  <->  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) )
53, 4syl 14 . . . . 5  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( x  e.  (
topGen `  B )  <->  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) )
65ralbidv 2438 . . . 4  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( A. x  e.  J  x  e.  (
topGen `  B )  <->  A. x  e.  J  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) )
71, 6syl5bb 191 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( J  C_  ( topGen `
 B )  <->  A. x  e.  J  A. y  e.  x  E. z  e.  B  ( y  e.  z  /\  z  C_  x ) ) )
87biimp3ar 1325 . 2  |-  ( ( J  e.  Top  /\  B  C_  J  /\  A. x  e.  J  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) )  ->  J  C_  ( topGen `
 B ) )
9 basgen 12279 . 2  |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B )
)  ->  ( topGen `  B )  =  J )
108, 9syld3an3 1262 1  |-  ( ( J  e.  Top  /\  B  C_  J  /\  A. x  e.  J  A. y  e.  x  E. z  e.  B  (
y  e.  z  /\  z  C_  x ) )  ->  ( topGen `  B
)  =  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   _Vcvv 2687    C_ wss 3072   ` cfv 5127   topGenctg 12165   Topctop 12194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2689  df-sbc 2911  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-br 3934  df-opab 3994  df-mpt 3995  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-iota 5092  df-fun 5129  df-fv 5135  df-topgen 12171  df-top 12195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator