ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brelrng Unicode version

Theorem brelrng 4893
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
Assertion
Ref Expression
brelrng  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  ran  C )

Proof of Theorem brelrng
StepHypRef Expression
1 brcnvg 4843 . . . . 5  |-  ( ( B  e.  G  /\  A  e.  F )  ->  ( B `' C A 
<->  A C B ) )
21ancoms 268 . . . 4  |-  ( ( A  e.  F  /\  B  e.  G )  ->  ( B `' C A 
<->  A C B ) )
32biimp3ar 1357 . . 3  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B `' C A )
4 breldmg 4868 . . . 4  |-  ( ( B  e.  G  /\  A  e.  F  /\  B `' C A )  ->  B  e.  dom  `' C
)
543com12 1209 . . 3  |-  ( ( A  e.  F  /\  B  e.  G  /\  B `' C A )  ->  B  e.  dom  `' C
)
63, 5syld3an3 1294 . 2  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  dom  `' C
)
7 df-rn 4670 . 2  |-  ran  C  =  dom  `' C
86, 7eleqtrrdi 2287 1  |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B )  ->  B  e.  ran  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    e. wcel 2164   class class class wbr 4029   `'ccnv 4658   dom cdm 4659   ran crn 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  opelrng  4894  brelrn  4895  relelrn  4898  fvssunirng  5569  shftfvalg  10962  ovshftex  10963  shftfval  10965
  Copyright terms: Public domain W3C validator