Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bd0el Unicode version

Theorem bj-bd0el 16003
Description: Boundedness of the formula "the empty set belongs to the setvar  x". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bd0el  |- BOUNDED  (/)  e.  x

Proof of Theorem bj-bd0el
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdeq0 16002 . 2  |- BOUNDED  y  =  (/)
21bj-bdcel 15972 1  |- BOUNDED  (/)  e.  x
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   (/)c0 3468  BOUNDED wbd 15947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-bd0 15948  ax-bdim 15949  ax-bdn 15952  ax-bdal 15953  ax-bdex 15954  ax-bdeq 15955
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-bdc 15976
This theorem is referenced by:  bj-d0clsepcl  16060  bj-bdind  16065
  Copyright terms: Public domain W3C validator