Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bd0el Unicode version

Theorem bj-bd0el 15017
Description: Boundedness of the formula "the empty set belongs to the setvar  x". (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-bd0el  |- BOUNDED  (/)  e.  x

Proof of Theorem bj-bd0el
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bdeq0 15016 . 2  |- BOUNDED  y  =  (/)
21bj-bdcel 14986 1  |- BOUNDED  (/)  e.  x
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   (/)c0 3437  BOUNDED wbd 14961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-bd0 14962  ax-bdim 14963  ax-bdn 14966  ax-bdal 14967  ax-bdex 14968  ax-bdeq 14969
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-in 3150  df-ss 3157  df-nul 3438  df-bdc 14990
This theorem is referenced by:  bj-d0clsepcl  15074  bj-bdind  15079
  Copyright terms: Public domain W3C validator