Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snex Unicode version

Theorem bj-snex 15849
Description: snex 4229 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-snex.1  |-  A  e. 
_V
Assertion
Ref Expression
bj-snex  |-  { A }  e.  _V

Proof of Theorem bj-snex
StepHypRef Expression
1 bj-snex.1 . 2  |-  A  e. 
_V
2 bj-snexg 15848 . 2  |-  ( A  e.  _V  ->  { A }  e.  _V )
31, 2ax-mp 5 1  |-  { A }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   _Vcvv 2772   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-pr 4253  ax-bdor 15752  ax-bdeq 15756  ax-bdsep 15820
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640
This theorem is referenced by:  bj-d0clsepcl  15861
  Copyright terms: Public domain W3C validator