Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snex Unicode version

Theorem bj-snex 13795
Description: snex 4164 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-snex.1  |-  A  e. 
_V
Assertion
Ref Expression
bj-snex  |-  { A }  e.  _V

Proof of Theorem bj-snex
StepHypRef Expression
1 bj-snex.1 . 2  |-  A  e. 
_V
2 bj-snexg 13794 . 2  |-  ( A  e.  _V  ->  { A }  e.  _V )
31, 2ax-mp 5 1  |-  { A }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-pr 4187  ax-bdor 13698  ax-bdeq 13702  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by:  bj-d0clsepcl  13807
  Copyright terms: Public domain W3C validator