Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snex Unicode version

Theorem bj-snex 15049
Description: snex 4200 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-snex.1  |-  A  e. 
_V
Assertion
Ref Expression
bj-snex  |-  { A }  e.  _V

Proof of Theorem bj-snex
StepHypRef Expression
1 bj-snex.1 . 2  |-  A  e. 
_V
2 bj-snexg 15048 . 2  |-  ( A  e.  _V  ->  { A }  e.  _V )
31, 2ax-mp 5 1  |-  { A }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   _Vcvv 2752   {csn 3607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-pr 4224  ax-bdor 14952  ax-bdeq 14956  ax-bdsep 15020
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614
This theorem is referenced by:  bj-d0clsepcl  15061
  Copyright terms: Public domain W3C validator