Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snex Unicode version

Theorem bj-snex 15526
Description: snex 4218 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-snex.1  |-  A  e. 
_V
Assertion
Ref Expression
bj-snex  |-  { A }  e.  _V

Proof of Theorem bj-snex
StepHypRef Expression
1 bj-snex.1 . 2  |-  A  e. 
_V
2 bj-snexg 15525 . 2  |-  ( A  e.  _V  ->  { A }  e.  _V )
31, 2ax-mp 5 1  |-  { A }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763   {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-pr 4242  ax-bdor 15429  ax-bdeq 15433  ax-bdsep 15497
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629
This theorem is referenced by:  bj-d0clsepcl  15538
  Copyright terms: Public domain W3C validator