Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snexg Unicode version

Theorem bj-snexg 16233
Description: snexg 4267 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snexg  |-  ( A  e.  V  ->  { A }  e.  _V )

Proof of Theorem bj-snexg
StepHypRef Expression
1 dfsn2 3680 . 2  |-  { A }  =  { A ,  A }
2 bj-prexg 16232 . . 3  |-  ( ( A  e.  V  /\  A  e.  V )  ->  { A ,  A }  e.  _V )
32anidms 397 . 2  |-  ( A  e.  V  ->  { A ,  A }  e.  _V )
41, 3eqeltrid 2316 1  |-  ( A  e.  V  ->  { A }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   _Vcvv 2799   {csn 3666   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-pr 4292  ax-bdor 16137  ax-bdeq 16141  ax-bdsep 16205
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  bj-snex  16234  bj-sels  16235  bj-sucexg  16243
  Copyright terms: Public domain W3C validator