Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snexg Unicode version

Theorem bj-snexg 15525
Description: snexg 4217 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snexg  |-  ( A  e.  V  ->  { A }  e.  _V )

Proof of Theorem bj-snexg
StepHypRef Expression
1 dfsn2 3636 . 2  |-  { A }  =  { A ,  A }
2 bj-prexg 15524 . . 3  |-  ( ( A  e.  V  /\  A  e.  V )  ->  { A ,  A }  e.  _V )
32anidms 397 . 2  |-  ( A  e.  V  ->  { A ,  A }  e.  _V )
41, 3eqeltrid 2283 1  |-  ( A  e.  V  ->  { A }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   _Vcvv 2763   {csn 3622   {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-pr 4242  ax-bdor 15429  ax-bdeq 15433  ax-bdsep 15497
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629
This theorem is referenced by:  bj-snex  15526  bj-sels  15527  bj-sucexg  15535
  Copyright terms: Public domain W3C validator