Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snexg Unicode version

Theorem bj-snexg 13099
Description: snexg 4103 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snexg  |-  ( A  e.  V  ->  { A }  e.  _V )

Proof of Theorem bj-snexg
StepHypRef Expression
1 dfsn2 3536 . 2  |-  { A }  =  { A ,  A }
2 bj-prexg 13098 . . 3  |-  ( ( A  e.  V  /\  A  e.  V )  ->  { A ,  A }  e.  _V )
32anidms 394 . 2  |-  ( A  e.  V  ->  { A ,  A }  e.  _V )
41, 3eqeltrid 2224 1  |-  ( A  e.  V  ->  { A }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1480   _Vcvv 2681   {csn 3522   {cpr 3523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-pr 4126  ax-bdor 13003  ax-bdeq 13007  ax-bdsep 13071
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-un 3070  df-sn 3528  df-pr 3529
This theorem is referenced by:  bj-snex  13100  bj-sels  13101  bj-sucexg  13109
  Copyright terms: Public domain W3C validator