| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-snex | GIF version | ||
| Description: snex 4269 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-snex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| bj-snex | ⊢ {𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-snex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | bj-snexg 16275 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-pr 4293 ax-bdor 16179 ax-bdeq 16183 ax-bdsep 16247 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: bj-d0clsepcl 16288 |
| Copyright terms: Public domain | W3C validator |