Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snex GIF version

Theorem bj-snex 13755
Description: snex 4163 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-snex.1 𝐴 ∈ V
Assertion
Ref Expression
bj-snex {𝐴} ∈ V

Proof of Theorem bj-snex
StepHypRef Expression
1 bj-snex.1 . 2 𝐴 ∈ V
2 bj-snexg 13754 . 2 (𝐴 ∈ V → {𝐴} ∈ V)
31, 2ax-mp 5 1 {𝐴} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2136  Vcvv 2725  {csn 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-pr 4186  ax-bdor 13658  ax-bdeq 13662  ax-bdsep 13726
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-un 3119  df-sn 3581  df-pr 3582
This theorem is referenced by:  bj-d0clsepcl  13767
  Copyright terms: Public domain W3C validator