Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-snex | GIF version |
Description: snex 4163 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-snex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
bj-snex | ⊢ {𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | bj-snexg 13754 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2725 {csn 3575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-pr 4186 ax-bdor 13658 ax-bdeq 13662 ax-bdsep 13726 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 |
This theorem is referenced by: bj-d0clsepcl 13767 |
Copyright terms: Public domain | W3C validator |