Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-snex GIF version

Theorem bj-snex 16048
Description: snex 4245 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-snex.1 𝐴 ∈ V
Assertion
Ref Expression
bj-snex {𝐴} ∈ V

Proof of Theorem bj-snex
StepHypRef Expression
1 bj-snex.1 . 2 𝐴 ∈ V
2 bj-snexg 16047 . 2 (𝐴 ∈ V → {𝐴} ∈ V)
31, 2ax-mp 5 1 {𝐴} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2178  Vcvv 2776  {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-pr 4269  ax-bdor 15951  ax-bdeq 15955  ax-bdsep 16019
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650
This theorem is referenced by:  bj-d0clsepcl  16060
  Copyright terms: Public domain W3C validator