ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqan12rd Unicode version

Theorem breqan12rd 3978
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1  |-  ( ph  ->  A  =  B )
breqan12i.2  |-  ( ps 
->  C  =  D
)
Assertion
Ref Expression
breqan12rd  |-  ( ( ps  /\  ph )  ->  ( A R C  <-> 
B R D ) )

Proof of Theorem breqan12rd
StepHypRef Expression
1 breq1d.1 . . 3  |-  ( ph  ->  A  =  B )
2 breqan12i.2 . . 3  |-  ( ps 
->  C  =  D
)
31, 2breqan12d 3977 . 2  |-  ( (
ph  /\  ps )  ->  ( A R C  <-> 
B R D ) )
43ancoms 266 1  |-  ( ( ps  /\  ph )  ->  ( A R C  <-> 
B R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   class class class wbr 3961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962
This theorem is referenced by:  xltnegi  9717
  Copyright terms: Public domain W3C validator