Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqan12rd | Unicode version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 | |
breqan12i.2 |
Ref | Expression |
---|---|
breqan12rd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . . 3 | |
2 | breqan12i.2 | . . 3 | |
3 | 1, 2 | breqan12d 3977 | . 2 |
4 | 3 | ancoms 266 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 class class class wbr 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 |
This theorem is referenced by: xltnegi 9717 |
Copyright terms: Public domain | W3C validator |