Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqan12rd Unicode version

Theorem breqan12rd 3978
 Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypotheses
Ref Expression
breq1d.1
breqan12i.2
Assertion
Ref Expression
breqan12rd

Proof of Theorem breqan12rd
StepHypRef Expression
1 breq1d.1 . . 3
2 breqan12i.2 . . 3
31, 2breqan12d 3977 . 2
43ancoms 266 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1332   class class class wbr 3961 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962 This theorem is referenced by:  xltnegi  9717
 Copyright terms: Public domain W3C validator