ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnbrtrd Unicode version

Theorem eqnbrtrd 4101
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
eqnbrtrd.1  |-  ( ph  ->  A  =  B )
eqnbrtrd.2  |-  ( ph  ->  -.  B R C )
Assertion
Ref Expression
eqnbrtrd  |-  ( ph  ->  -.  A R C )

Proof of Theorem eqnbrtrd
StepHypRef Expression
1 eqnbrtrd.2 . 2  |-  ( ph  ->  -.  B R C )
2 eqnbrtrd.1 . . 3  |-  ( ph  ->  A  =  B )
32breq1d 4093 . 2  |-  ( ph  ->  ( A R C  <-> 
B R C ) )
41, 3mtbird 677 1  |-  ( ph  ->  -.  A R C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084
This theorem is referenced by:  xnn0dcle  9998  xqltnle  10487  pczndvds  12839  pcadd  12863  gausslemma2dlem1a  15737
  Copyright terms: Public domain W3C validator