ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnbrtrd Unicode version

Theorem eqnbrtrd 4008
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
eqnbrtrd.1  |-  ( ph  ->  A  =  B )
eqnbrtrd.2  |-  ( ph  ->  -.  B R C )
Assertion
Ref Expression
eqnbrtrd  |-  ( ph  ->  -.  A R C )

Proof of Theorem eqnbrtrd
StepHypRef Expression
1 eqnbrtrd.2 . 2  |-  ( ph  ->  -.  B R C )
2 eqnbrtrd.1 . . 3  |-  ( ph  ->  A  =  B )
32breq1d 4000 . 2  |-  ( ph  ->  ( A R C  <-> 
B R C ) )
41, 3mtbird 669 1  |-  ( ph  ->  -.  A R C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1349   class class class wbr 3990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-ext 2153
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-nf 1455  df-sb 1757  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-v 2733  df-un 3126  df-sn 3590  df-pr 3591  df-op 3593  df-br 3991
This theorem is referenced by:  xnn0dcle  9763  pczndvds  12273  pcadd  12297
  Copyright terms: Public domain W3C validator