Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqnbrtrd | Unicode version |
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
eqnbrtrd.1 | |
eqnbrtrd.2 |
Ref | Expression |
---|---|
eqnbrtrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnbrtrd.2 | . 2 | |
2 | eqnbrtrd.1 | . . 3 | |
3 | 2 | breq1d 4000 | . 2 |
4 | 1, 3 | mtbird 669 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1349 class class class wbr 3990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-v 2733 df-un 3126 df-sn 3590 df-pr 3591 df-op 3593 df-br 3991 |
This theorem is referenced by: xnn0dcle 9763 pczndvds 12273 pcadd 12297 |
Copyright terms: Public domain | W3C validator |