ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnbrtrd Unicode version

Theorem eqnbrtrd 4036
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
eqnbrtrd.1  |-  ( ph  ->  A  =  B )
eqnbrtrd.2  |-  ( ph  ->  -.  B R C )
Assertion
Ref Expression
eqnbrtrd  |-  ( ph  ->  -.  A R C )

Proof of Theorem eqnbrtrd
StepHypRef Expression
1 eqnbrtrd.2 . 2  |-  ( ph  ->  -.  B R C )
2 eqnbrtrd.1 . . 3  |-  ( ph  ->  A  =  B )
32breq1d 4028 . 2  |-  ( ph  ->  ( A R C  <-> 
B R C ) )
41, 3mtbird 674 1  |-  ( ph  ->  -.  A R C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364   class class class wbr 4018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019
This theorem is referenced by:  xnn0dcle  9834  xqltnle  10300  pczndvds  12351  pcadd  12375
  Copyright terms: Public domain W3C validator