ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xltnegi Unicode version

Theorem xltnegi 9910
Description: Forward direction of xltneg 9911. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xltnegi  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  -e
B  <  -e A )

Proof of Theorem xltnegi
StepHypRef Expression
1 elxr 9851 . . 3  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9851 . . . . . 6  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 ltneg 8489 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -u B  <  -u A
) )
4 rexneg 9905 . . . . . . . . . 10  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
5 rexneg 9905 . . . . . . . . . 10  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
64, 5breqan12rd 4050 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (  -e B  <  -e A  <->  -u B  <  -u A ) )
73, 6bitr4d 191 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -e B  <  -e
A ) )
87biimpd 144 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  -> 
-e B  <  -e A ) )
9 xnegeq 9902 . . . . . . . . . . 11  |-  ( B  = +oo  ->  -e
B  =  -e +oo )
10 xnegpnf 9903 . . . . . . . . . . 11  |-  -e +oo  = -oo
119, 10eqtrdi 2245 . . . . . . . . . 10  |-  ( B  = +oo  ->  -e
B  = -oo )
1211adantl 277 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  -> 
-e B  = -oo )
13 renegcl 8287 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  -u A  e.  RR )
145, 13eqeltrd 2273 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -e
A  e.  RR )
15 mnflt 9858 . . . . . . . . . . 11  |-  (  -e A  e.  RR  -> -oo  <  -e A )
1614, 15syl 14 . . . . . . . . . 10  |-  ( A  e.  RR  -> -oo  <  -e A )
1716adantr 276 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  -> -oo  <  -e A )
1812, 17eqbrtrd 4055 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = +oo )  -> 
-e B  <  -e A )
1918a1d 22 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A  <  B  -> 
-e B  <  -e A ) )
20 simpr 110 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  B  = -oo )
2120breq2d 4045 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
22 rexr 8072 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  RR* )
23 nltmnf 9863 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  -.  A  < -oo )
2422, 23syl 14 . . . . . . . . . 10  |-  ( A  e.  RR  ->  -.  A  < -oo )
2524adantr 276 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  < -oo )
2625pm2.21d 620 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  < -oo  -> 
-e B  <  -e A ) )
2721, 26sylbid 150 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  -> 
-e B  <  -e A ) )
288, 19, 273jaodan 1317 . . . . . 6  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  -e
B  <  -e A ) )
292, 28sylan2b 287 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A  <  B  -> 
-e B  <  -e A ) )
3029expimpd 363 . . . 4  |-  ( A  e.  RR  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
31 simpl 109 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  A  = +oo )
3231breq1d 4043 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  <-> +oo 
<  B ) )
33 pnfnlt 9862 . . . . . . . 8  |-  ( B  e.  RR*  ->  -. +oo  <  B )
3433adantl 277 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -. +oo  <  B )
3534pm2.21d 620 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( +oo  <  B  ->  -e B  <  -e
A ) )
3632, 35sylbid 150 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  -> 
-e B  <  -e A ) )
3736expimpd 363 . . . 4  |-  ( A  = +oo  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
38 breq1 4036 . . . . . 6  |-  ( A  = -oo  ->  ( A  <  B  <-> -oo  <  B
) )
3938anbi2d 464 . . . . 5  |-  ( A  = -oo  ->  (
( B  e.  RR*  /\  A  <  B )  <-> 
( B  e.  RR*  /\ -oo  <  B ) ) )
40 renegcl 8287 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  -u B  e.  RR )
414, 40eqeltrd 2273 . . . . . . . . . 10  |-  ( B  e.  RR  ->  -e
B  e.  RR )
4241adantr 276 . . . . . . . . 9  |-  ( ( B  e.  RR  /\ -oo 
<  B )  ->  -e
B  e.  RR )
43 ltpnf 9855 . . . . . . . . 9  |-  (  -e B  e.  RR  -> 
-e B  < +oo )
4442, 43syl 14 . . . . . . . 8  |-  ( ( B  e.  RR  /\ -oo 
<  B )  ->  -e
B  < +oo )
4511adantr 276 . . . . . . . . 9  |-  ( ( B  = +oo  /\ -oo 
<  B )  ->  -e
B  = -oo )
46 mnfltpnf 9860 . . . . . . . . 9  |- -oo  < +oo
4745, 46eqbrtrdi 4072 . . . . . . . 8  |-  ( ( B  = +oo  /\ -oo 
<  B )  ->  -e
B  < +oo )
48 breq2 4037 . . . . . . . . . 10  |-  ( B  = -oo  ->  ( -oo  <  B  <-> -oo  < -oo ) )
49 mnfxr 8083 . . . . . . . . . . . 12  |- -oo  e.  RR*
50 nltmnf 9863 . . . . . . . . . . . 12  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
5149, 50ax-mp 5 . . . . . . . . . . 11  |-  -. -oo  < -oo
5251pm2.21i 647 . . . . . . . . . 10  |-  ( -oo  < -oo  ->  -e B  < +oo )
5348, 52biimtrdi 163 . . . . . . . . 9  |-  ( B  = -oo  ->  ( -oo  <  B  ->  -e
B  < +oo )
)
5453imp 124 . . . . . . . 8  |-  ( ( B  = -oo  /\ -oo 
<  B )  ->  -e
B  < +oo )
5544, 47, 543jaoian 1316 . . . . . . 7  |-  ( ( ( B  e.  RR  \/  B  = +oo  \/  B  = -oo )  /\ -oo  <  B
)  ->  -e B  < +oo )
562, 55sylanb 284 . . . . . 6  |-  ( ( B  e.  RR*  /\ -oo  <  B )  ->  -e
B  < +oo )
57 xnegeq 9902 . . . . . . . 8  |-  ( A  = -oo  ->  -e
A  =  -e -oo )
58 xnegmnf 9904 . . . . . . . 8  |-  -e -oo  = +oo
5957, 58eqtrdi 2245 . . . . . . 7  |-  ( A  = -oo  ->  -e
A  = +oo )
6059breq2d 4045 . . . . . 6  |-  ( A  = -oo  ->  (  -e B  <  -e
A  <->  -e B  < +oo ) )
6156, 60imbitrrid 156 . . . . 5  |-  ( A  = -oo  ->  (
( B  e.  RR*  /\ -oo  <  B )  ->  -e B  <  -e
A ) )
6239, 61sylbid 150 . . . 4  |-  ( A  = -oo  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
6330, 37, 623jaoi 1314 . . 3  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
641, 63sylbi 121 . 2  |-  ( A  e.  RR*  ->  ( ( B  e.  RR*  /\  A  <  B )  ->  -e
B  <  -e A ) )
65643impib 1203 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  -e
B  <  -e A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   RRcr 7878   +oocpnf 8058   -oocmnf 8059   RR*cxr 8060    < clt 8061   -ucneg 8198    -ecxne 9844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-sub 8199  df-neg 8200  df-xneg 9847
This theorem is referenced by:  xltneg  9911
  Copyright terms: Public domain W3C validator