| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xltnegi | Unicode version | ||
| Description: Forward direction of xltneg 9928. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xltnegi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9868 |
. . 3
| |
| 2 | elxr 9868 |
. . . . . 6
| |
| 3 | ltneg 8506 |
. . . . . . . . 9
| |
| 4 | rexneg 9922 |
. . . . . . . . . 10
| |
| 5 | rexneg 9922 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | breqan12rd 4051 |
. . . . . . . . 9
|
| 7 | 3, 6 | bitr4d 191 |
. . . . . . . 8
|
| 8 | 7 | biimpd 144 |
. . . . . . 7
|
| 9 | xnegeq 9919 |
. . . . . . . . . . 11
| |
| 10 | xnegpnf 9920 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | eqtrdi 2245 |
. . . . . . . . . 10
|
| 12 | 11 | adantl 277 |
. . . . . . . . 9
|
| 13 | renegcl 8304 |
. . . . . . . . . . . 12
| |
| 14 | 5, 13 | eqeltrd 2273 |
. . . . . . . . . . 11
|
| 15 | mnflt 9875 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | syl 14 |
. . . . . . . . . 10
|
| 17 | 16 | adantr 276 |
. . . . . . . . 9
|
| 18 | 12, 17 | eqbrtrd 4056 |
. . . . . . . 8
|
| 19 | 18 | a1d 22 |
. . . . . . 7
|
| 20 | simpr 110 |
. . . . . . . . 9
| |
| 21 | 20 | breq2d 4046 |
. . . . . . . 8
|
| 22 | rexr 8089 |
. . . . . . . . . . 11
| |
| 23 | nltmnf 9880 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | syl 14 |
. . . . . . . . . 10
|
| 25 | 24 | adantr 276 |
. . . . . . . . 9
|
| 26 | 25 | pm2.21d 620 |
. . . . . . . 8
|
| 27 | 21, 26 | sylbid 150 |
. . . . . . 7
|
| 28 | 8, 19, 27 | 3jaodan 1317 |
. . . . . 6
|
| 29 | 2, 28 | sylan2b 287 |
. . . . 5
|
| 30 | 29 | expimpd 363 |
. . . 4
|
| 31 | simpl 109 |
. . . . . . 7
| |
| 32 | 31 | breq1d 4044 |
. . . . . 6
|
| 33 | pnfnlt 9879 |
. . . . . . . 8
| |
| 34 | 33 | adantl 277 |
. . . . . . 7
|
| 35 | 34 | pm2.21d 620 |
. . . . . 6
|
| 36 | 32, 35 | sylbid 150 |
. . . . 5
|
| 37 | 36 | expimpd 363 |
. . . 4
|
| 38 | breq1 4037 |
. . . . . 6
| |
| 39 | 38 | anbi2d 464 |
. . . . 5
|
| 40 | renegcl 8304 |
. . . . . . . . . . 11
| |
| 41 | 4, 40 | eqeltrd 2273 |
. . . . . . . . . 10
|
| 42 | 41 | adantr 276 |
. . . . . . . . 9
|
| 43 | ltpnf 9872 |
. . . . . . . . 9
| |
| 44 | 42, 43 | syl 14 |
. . . . . . . 8
|
| 45 | 11 | adantr 276 |
. . . . . . . . 9
|
| 46 | mnfltpnf 9877 |
. . . . . . . . 9
| |
| 47 | 45, 46 | eqbrtrdi 4073 |
. . . . . . . 8
|
| 48 | breq2 4038 |
. . . . . . . . . 10
| |
| 49 | mnfxr 8100 |
. . . . . . . . . . . 12
| |
| 50 | nltmnf 9880 |
. . . . . . . . . . . 12
| |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . . . . . 11
|
| 52 | 51 | pm2.21i 647 |
. . . . . . . . . 10
|
| 53 | 48, 52 | biimtrdi 163 |
. . . . . . . . 9
|
| 54 | 53 | imp 124 |
. . . . . . . 8
|
| 55 | 44, 47, 54 | 3jaoian 1316 |
. . . . . . 7
|
| 56 | 2, 55 | sylanb 284 |
. . . . . 6
|
| 57 | xnegeq 9919 |
. . . . . . . 8
| |
| 58 | xnegmnf 9921 |
. . . . . . . 8
| |
| 59 | 57, 58 | eqtrdi 2245 |
. . . . . . 7
|
| 60 | 59 | breq2d 4046 |
. . . . . 6
|
| 61 | 56, 60 | imbitrrid 156 |
. . . . 5
|
| 62 | 39, 61 | sylbid 150 |
. . . 4
|
| 63 | 30, 37, 62 | 3jaoi 1314 |
. . 3
|
| 64 | 1, 63 | sylbi 121 |
. 2
|
| 65 | 64 | 3impib 1203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-sub 8216 df-neg 8217 df-xneg 9864 |
| This theorem is referenced by: xltneg 9928 |
| Copyright terms: Public domain | W3C validator |