Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xltnegi | Unicode version |
Description: Forward direction of xltneg 9772. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xltnegi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9712 | . . 3 | |
2 | elxr 9712 | . . . . . 6 | |
3 | ltneg 8360 | . . . . . . . . 9 | |
4 | rexneg 9766 | . . . . . . . . . 10 | |
5 | rexneg 9766 | . . . . . . . . . 10 | |
6 | 4, 5 | breqan12rd 3999 | . . . . . . . . 9 |
7 | 3, 6 | bitr4d 190 | . . . . . . . 8 |
8 | 7 | biimpd 143 | . . . . . . 7 |
9 | xnegeq 9763 | . . . . . . . . . . 11 | |
10 | xnegpnf 9764 | . . . . . . . . . . 11 | |
11 | 9, 10 | eqtrdi 2215 | . . . . . . . . . 10 |
12 | 11 | adantl 275 | . . . . . . . . 9 |
13 | renegcl 8159 | . . . . . . . . . . . 12 | |
14 | 5, 13 | eqeltrd 2243 | . . . . . . . . . . 11 |
15 | mnflt 9719 | . . . . . . . . . . 11 | |
16 | 14, 15 | syl 14 | . . . . . . . . . 10 |
17 | 16 | adantr 274 | . . . . . . . . 9 |
18 | 12, 17 | eqbrtrd 4004 | . . . . . . . 8 |
19 | 18 | a1d 22 | . . . . . . 7 |
20 | simpr 109 | . . . . . . . . 9 | |
21 | 20 | breq2d 3994 | . . . . . . . 8 |
22 | rexr 7944 | . . . . . . . . . . 11 | |
23 | nltmnf 9724 | . . . . . . . . . . 11 | |
24 | 22, 23 | syl 14 | . . . . . . . . . 10 |
25 | 24 | adantr 274 | . . . . . . . . 9 |
26 | 25 | pm2.21d 609 | . . . . . . . 8 |
27 | 21, 26 | sylbid 149 | . . . . . . 7 |
28 | 8, 19, 27 | 3jaodan 1296 | . . . . . 6 |
29 | 2, 28 | sylan2b 285 | . . . . 5 |
30 | 29 | expimpd 361 | . . . 4 |
31 | simpl 108 | . . . . . . 7 | |
32 | 31 | breq1d 3992 | . . . . . 6 |
33 | pnfnlt 9723 | . . . . . . . 8 | |
34 | 33 | adantl 275 | . . . . . . 7 |
35 | 34 | pm2.21d 609 | . . . . . 6 |
36 | 32, 35 | sylbid 149 | . . . . 5 |
37 | 36 | expimpd 361 | . . . 4 |
38 | breq1 3985 | . . . . . 6 | |
39 | 38 | anbi2d 460 | . . . . 5 |
40 | renegcl 8159 | . . . . . . . . . . 11 | |
41 | 4, 40 | eqeltrd 2243 | . . . . . . . . . 10 |
42 | 41 | adantr 274 | . . . . . . . . 9 |
43 | ltpnf 9716 | . . . . . . . . 9 | |
44 | 42, 43 | syl 14 | . . . . . . . 8 |
45 | 11 | adantr 274 | . . . . . . . . 9 |
46 | mnfltpnf 9721 | . . . . . . . . 9 | |
47 | 45, 46 | eqbrtrdi 4021 | . . . . . . . 8 |
48 | breq2 3986 | . . . . . . . . . 10 | |
49 | mnfxr 7955 | . . . . . . . . . . . 12 | |
50 | nltmnf 9724 | . . . . . . . . . . . 12 | |
51 | 49, 50 | ax-mp 5 | . . . . . . . . . . 11 |
52 | 51 | pm2.21i 636 | . . . . . . . . . 10 |
53 | 48, 52 | syl6bi 162 | . . . . . . . . 9 |
54 | 53 | imp 123 | . . . . . . . 8 |
55 | 44, 47, 54 | 3jaoian 1295 | . . . . . . 7 |
56 | 2, 55 | sylanb 282 | . . . . . 6 |
57 | xnegeq 9763 | . . . . . . . 8 | |
58 | xnegmnf 9765 | . . . . . . . 8 | |
59 | 57, 58 | eqtrdi 2215 | . . . . . . 7 |
60 | 59 | breq2d 3994 | . . . . . 6 |
61 | 56, 60 | syl5ibr 155 | . . . . 5 |
62 | 39, 61 | sylbid 149 | . . . 4 |
63 | 30, 37, 62 | 3jaoi 1293 | . . 3 |
64 | 1, 63 | sylbi 120 | . 2 |
65 | 64 | 3impib 1191 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3o 967 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 cr 7752 cpnf 7930 cmnf 7931 cxr 7932 clt 7933 cneg 8070 cxne 9705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-sub 8071 df-neg 8072 df-xneg 9708 |
This theorem is referenced by: xltneg 9772 |
Copyright terms: Public domain | W3C validator |