ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xltnegi Unicode version

Theorem xltnegi 9992
Description: Forward direction of xltneg 9993. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xltnegi  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  -e
B  <  -e A )

Proof of Theorem xltnegi
StepHypRef Expression
1 elxr 9933 . . 3  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 elxr 9933 . . . . . 6  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
3 ltneg 8570 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -u B  <  -u A
) )
4 rexneg 9987 . . . . . . . . . 10  |-  ( B  e.  RR  ->  -e
B  =  -u B
)
5 rexneg 9987 . . . . . . . . . 10  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
64, 5breqan12rd 4076 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (  -e B  <  -e A  <->  -u B  <  -u A ) )
73, 6bitr4d 191 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -e B  <  -e
A ) )
87biimpd 144 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  -> 
-e B  <  -e A ) )
9 xnegeq 9984 . . . . . . . . . . 11  |-  ( B  = +oo  ->  -e
B  =  -e +oo )
10 xnegpnf 9985 . . . . . . . . . . 11  |-  -e +oo  = -oo
119, 10eqtrdi 2256 . . . . . . . . . 10  |-  ( B  = +oo  ->  -e
B  = -oo )
1211adantl 277 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  -> 
-e B  = -oo )
13 renegcl 8368 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  -u A  e.  RR )
145, 13eqeltrd 2284 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  -e
A  e.  RR )
15 mnflt 9940 . . . . . . . . . . 11  |-  (  -e A  e.  RR  -> -oo  <  -e A )
1614, 15syl 14 . . . . . . . . . 10  |-  ( A  e.  RR  -> -oo  <  -e A )
1716adantr 276 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = +oo )  -> -oo  <  -e A )
1812, 17eqbrtrd 4081 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = +oo )  -> 
-e B  <  -e A )
1918a1d 22 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A  <  B  -> 
-e B  <  -e A ) )
20 simpr 110 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  B  = -oo )
2120breq2d 4071 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  <->  A  < -oo ) )
22 rexr 8153 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  RR* )
23 nltmnf 9945 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  -.  A  < -oo )
2422, 23syl 14 . . . . . . . . . 10  |-  ( A  e.  RR  ->  -.  A  < -oo )
2524adantr 276 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  -.  A  < -oo )
2625pm2.21d 620 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  < -oo  -> 
-e B  <  -e A ) )
2721, 26sylbid 150 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A  <  B  -> 
-e B  <  -e A ) )
288, 19, 273jaodan 1319 . . . . . 6  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )  ->  ( A  <  B  ->  -e
B  <  -e A ) )
292, 28sylan2b 287 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A  <  B  -> 
-e B  <  -e A ) )
3029expimpd 363 . . . 4  |-  ( A  e.  RR  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
31 simpl 109 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  A  = +oo )
3231breq1d 4069 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  <-> +oo 
<  B ) )
33 pnfnlt 9944 . . . . . . . 8  |-  ( B  e.  RR*  ->  -. +oo  <  B )
3433adantl 277 . . . . . . 7  |-  ( ( A  = +oo  /\  B  e.  RR* )  ->  -. +oo  <  B )
3534pm2.21d 620 . . . . . 6  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( +oo  <  B  ->  -e B  <  -e
A ) )
3632, 35sylbid 150 . . . . 5  |-  ( ( A  = +oo  /\  B  e.  RR* )  -> 
( A  <  B  -> 
-e B  <  -e A ) )
3736expimpd 363 . . . 4  |-  ( A  = +oo  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
38 breq1 4062 . . . . . 6  |-  ( A  = -oo  ->  ( A  <  B  <-> -oo  <  B
) )
3938anbi2d 464 . . . . 5  |-  ( A  = -oo  ->  (
( B  e.  RR*  /\  A  <  B )  <-> 
( B  e.  RR*  /\ -oo  <  B ) ) )
40 renegcl 8368 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  -u B  e.  RR )
414, 40eqeltrd 2284 . . . . . . . . . 10  |-  ( B  e.  RR  ->  -e
B  e.  RR )
4241adantr 276 . . . . . . . . 9  |-  ( ( B  e.  RR  /\ -oo 
<  B )  ->  -e
B  e.  RR )
43 ltpnf 9937 . . . . . . . . 9  |-  (  -e B  e.  RR  -> 
-e B  < +oo )
4442, 43syl 14 . . . . . . . 8  |-  ( ( B  e.  RR  /\ -oo 
<  B )  ->  -e
B  < +oo )
4511adantr 276 . . . . . . . . 9  |-  ( ( B  = +oo  /\ -oo 
<  B )  ->  -e
B  = -oo )
46 mnfltpnf 9942 . . . . . . . . 9  |- -oo  < +oo
4745, 46eqbrtrdi 4098 . . . . . . . 8  |-  ( ( B  = +oo  /\ -oo 
<  B )  ->  -e
B  < +oo )
48 breq2 4063 . . . . . . . . . 10  |-  ( B  = -oo  ->  ( -oo  <  B  <-> -oo  < -oo ) )
49 mnfxr 8164 . . . . . . . . . . . 12  |- -oo  e.  RR*
50 nltmnf 9945 . . . . . . . . . . . 12  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
5149, 50ax-mp 5 . . . . . . . . . . 11  |-  -. -oo  < -oo
5251pm2.21i 647 . . . . . . . . . 10  |-  ( -oo  < -oo  ->  -e B  < +oo )
5348, 52biimtrdi 163 . . . . . . . . 9  |-  ( B  = -oo  ->  ( -oo  <  B  ->  -e
B  < +oo )
)
5453imp 124 . . . . . . . 8  |-  ( ( B  = -oo  /\ -oo 
<  B )  ->  -e
B  < +oo )
5544, 47, 543jaoian 1318 . . . . . . 7  |-  ( ( ( B  e.  RR  \/  B  = +oo  \/  B  = -oo )  /\ -oo  <  B
)  ->  -e B  < +oo )
562, 55sylanb 284 . . . . . 6  |-  ( ( B  e.  RR*  /\ -oo  <  B )  ->  -e
B  < +oo )
57 xnegeq 9984 . . . . . . . 8  |-  ( A  = -oo  ->  -e
A  =  -e -oo )
58 xnegmnf 9986 . . . . . . . 8  |-  -e -oo  = +oo
5957, 58eqtrdi 2256 . . . . . . 7  |-  ( A  = -oo  ->  -e
A  = +oo )
6059breq2d 4071 . . . . . 6  |-  ( A  = -oo  ->  (  -e B  <  -e
A  <->  -e B  < +oo ) )
6156, 60imbitrrid 156 . . . . 5  |-  ( A  = -oo  ->  (
( B  e.  RR*  /\ -oo  <  B )  ->  -e B  <  -e
A ) )
6239, 61sylbid 150 . . . 4  |-  ( A  = -oo  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
6330, 37, 623jaoi 1316 . . 3  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  (
( B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A ) )
641, 63sylbi 121 . 2  |-  ( A  e.  RR*  ->  ( ( B  e.  RR*  /\  A  <  B )  ->  -e
B  <  -e A ) )
65643impib 1204 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  -e
B  <  -e A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059   RRcr 7959   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141    < clt 8142   -ucneg 8279    -ecxne 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-sub 8280  df-neg 8281  df-xneg 9929
This theorem is referenced by:  xltneg  9993
  Copyright terms: Public domain W3C validator