| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xltnegi | Unicode version | ||
| Description: Forward direction of xltneg 9911. (Contributed by Mario Carneiro, 20-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| xltnegi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elxr 9851 | 
. . 3
 | |
| 2 | elxr 9851 | 
. . . . . 6
 | |
| 3 | ltneg 8489 | 
. . . . . . . . 9
 | |
| 4 | rexneg 9905 | 
. . . . . . . . . 10
 | |
| 5 | rexneg 9905 | 
. . . . . . . . . 10
 | |
| 6 | 4, 5 | breqan12rd 4050 | 
. . . . . . . . 9
 | 
| 7 | 3, 6 | bitr4d 191 | 
. . . . . . . 8
 | 
| 8 | 7 | biimpd 144 | 
. . . . . . 7
 | 
| 9 | xnegeq 9902 | 
. . . . . . . . . . 11
 | |
| 10 | xnegpnf 9903 | 
. . . . . . . . . . 11
 | |
| 11 | 9, 10 | eqtrdi 2245 | 
. . . . . . . . . 10
 | 
| 12 | 11 | adantl 277 | 
. . . . . . . . 9
 | 
| 13 | renegcl 8287 | 
. . . . . . . . . . . 12
 | |
| 14 | 5, 13 | eqeltrd 2273 | 
. . . . . . . . . . 11
 | 
| 15 | mnflt 9858 | 
. . . . . . . . . . 11
 | |
| 16 | 14, 15 | syl 14 | 
. . . . . . . . . 10
 | 
| 17 | 16 | adantr 276 | 
. . . . . . . . 9
 | 
| 18 | 12, 17 | eqbrtrd 4055 | 
. . . . . . . 8
 | 
| 19 | 18 | a1d 22 | 
. . . . . . 7
 | 
| 20 | simpr 110 | 
. . . . . . . . 9
 | |
| 21 | 20 | breq2d 4045 | 
. . . . . . . 8
 | 
| 22 | rexr 8072 | 
. . . . . . . . . . 11
 | |
| 23 | nltmnf 9863 | 
. . . . . . . . . . 11
 | |
| 24 | 22, 23 | syl 14 | 
. . . . . . . . . 10
 | 
| 25 | 24 | adantr 276 | 
. . . . . . . . 9
 | 
| 26 | 25 | pm2.21d 620 | 
. . . . . . . 8
 | 
| 27 | 21, 26 | sylbid 150 | 
. . . . . . 7
 | 
| 28 | 8, 19, 27 | 3jaodan 1317 | 
. . . . . 6
 | 
| 29 | 2, 28 | sylan2b 287 | 
. . . . 5
 | 
| 30 | 29 | expimpd 363 | 
. . . 4
 | 
| 31 | simpl 109 | 
. . . . . . 7
 | |
| 32 | 31 | breq1d 4043 | 
. . . . . 6
 | 
| 33 | pnfnlt 9862 | 
. . . . . . . 8
 | |
| 34 | 33 | adantl 277 | 
. . . . . . 7
 | 
| 35 | 34 | pm2.21d 620 | 
. . . . . 6
 | 
| 36 | 32, 35 | sylbid 150 | 
. . . . 5
 | 
| 37 | 36 | expimpd 363 | 
. . . 4
 | 
| 38 | breq1 4036 | 
. . . . . 6
 | |
| 39 | 38 | anbi2d 464 | 
. . . . 5
 | 
| 40 | renegcl 8287 | 
. . . . . . . . . . 11
 | |
| 41 | 4, 40 | eqeltrd 2273 | 
. . . . . . . . . 10
 | 
| 42 | 41 | adantr 276 | 
. . . . . . . . 9
 | 
| 43 | ltpnf 9855 | 
. . . . . . . . 9
 | |
| 44 | 42, 43 | syl 14 | 
. . . . . . . 8
 | 
| 45 | 11 | adantr 276 | 
. . . . . . . . 9
 | 
| 46 | mnfltpnf 9860 | 
. . . . . . . . 9
 | |
| 47 | 45, 46 | eqbrtrdi 4072 | 
. . . . . . . 8
 | 
| 48 | breq2 4037 | 
. . . . . . . . . 10
 | |
| 49 | mnfxr 8083 | 
. . . . . . . . . . . 12
 | |
| 50 | nltmnf 9863 | 
. . . . . . . . . . . 12
 | |
| 51 | 49, 50 | ax-mp 5 | 
. . . . . . . . . . 11
 | 
| 52 | 51 | pm2.21i 647 | 
. . . . . . . . . 10
 | 
| 53 | 48, 52 | biimtrdi 163 | 
. . . . . . . . 9
 | 
| 54 | 53 | imp 124 | 
. . . . . . . 8
 | 
| 55 | 44, 47, 54 | 3jaoian 1316 | 
. . . . . . 7
 | 
| 56 | 2, 55 | sylanb 284 | 
. . . . . 6
 | 
| 57 | xnegeq 9902 | 
. . . . . . . 8
 | |
| 58 | xnegmnf 9904 | 
. . . . . . . 8
 | |
| 59 | 57, 58 | eqtrdi 2245 | 
. . . . . . 7
 | 
| 60 | 59 | breq2d 4045 | 
. . . . . 6
 | 
| 61 | 56, 60 | imbitrrid 156 | 
. . . . 5
 | 
| 62 | 39, 61 | sylbid 150 | 
. . . 4
 | 
| 63 | 30, 37, 62 | 3jaoi 1314 | 
. . 3
 | 
| 64 | 1, 63 | sylbi 121 | 
. 2
 | 
| 65 | 64 | 3impib 1203 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-sub 8199 df-neg 8200 df-xneg 9847 | 
| This theorem is referenced by: xltneg 9911 | 
| Copyright terms: Public domain | W3C validator |