![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvexv1 | Unicode version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 1766 with a disjoint variable condition. See cbvexvw 1931 for a version with two disjoint variable conditions, and cbvexv 1929 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbvalv1.nf1 |
![]() ![]() ![]() ![]() |
cbvalv1.nf2 |
![]() ![]() ![]() ![]() |
cbvalv1.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cbvexv1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalv1.nf2 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | nfex 1647 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
3 | cbvalv1.nf1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
4 | 3 | nfri 1529 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | cbvalv1.1 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | bicomd 141 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | equcoms 1718 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 4, 7 | equsex 1738 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | exsimpr 1628 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 8, 9 | sylbir 135 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 2, 10 | exlimi 1604 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 3 | nfex 1647 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
13 | 1 | nfri 1529 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13, 5 | equsex 1738 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | exsimpr 1628 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 14, 15 | sylbir 135 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 12, 16 | exlimi 1604 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 11, 17 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 |
This theorem depends on definitions: df-bi 117 df-nf 1471 |
This theorem is referenced by: cbvrexfw 2708 fprod2dlemstep 11647 |
Copyright terms: Public domain | W3C validator |