ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexv1 Unicode version

Theorem cbvexv1 1762
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 1766 with a disjoint variable condition. See cbvexvw 1931 for a version with two disjoint variable conditions, and cbvexv 1929 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1  |-  F/ y
ph
cbvalv1.nf2  |-  F/ x ps
cbvalv1.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvexv1  |-  ( E. x ph  <->  E. y ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvexv1
StepHypRef Expression
1 cbvalv1.nf2 . . . 4  |-  F/ x ps
21nfex 1647 . . 3  |-  F/ x E. y ps
3 cbvalv1.nf1 . . . . . 6  |-  F/ y
ph
43nfri 1529 . . . . 5  |-  ( ph  ->  A. y ph )
5 cbvalv1.1 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
65bicomd 141 . . . . . 6  |-  ( x  =  y  ->  ( ps 
<-> 
ph ) )
76equcoms 1718 . . . . 5  |-  ( y  =  x  ->  ( ps 
<-> 
ph ) )
84, 7equsex 1738 . . . 4  |-  ( E. y ( y  =  x  /\  ps )  <->  ph )
9 exsimpr 1628 . . . 4  |-  ( E. y ( y  =  x  /\  ps )  ->  E. y ps )
108, 9sylbir 135 . . 3  |-  ( ph  ->  E. y ps )
112, 10exlimi 1604 . 2  |-  ( E. x ph  ->  E. y ps )
123nfex 1647 . . 3  |-  F/ y E. x ph
131nfri 1529 . . . . 5  |-  ( ps 
->  A. x ps )
1413, 5equsex 1738 . . . 4  |-  ( E. x ( x  =  y  /\  ph )  <->  ps )
15 exsimpr 1628 . . . 4  |-  ( E. x ( x  =  y  /\  ph )  ->  E. x ph )
1614, 15sylbir 135 . . 3  |-  ( ps 
->  E. x ph )
1712, 16exlimi 1604 . 2  |-  ( E. y ps  ->  E. x ph )
1811, 17impbii 126 1  |-  ( E. x ph  <->  E. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   F/wnf 1470   E.wex 1502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544
This theorem depends on definitions:  df-bi 117  df-nf 1471
This theorem is referenced by:  cbvrexfw  2708  fprod2dlemstep  11647
  Copyright terms: Public domain W3C validator