ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexfw Unicode version

Theorem cbvrexfw 2683
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2685 with a disjoint variable condition, which does not require ax-13 2138. (Contributed by FL, 27-Apr-2008.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrexfw.1  |-  F/_ x A
cbvrexfw.2  |-  F/_ y A
cbvrexfw.3  |-  F/ y
ph
cbvrexfw.4  |-  F/ x ps
cbvrexfw.5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvrexfw  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem cbvrexfw
StepHypRef Expression
1 cbvrexfw.2 . . . . 5  |-  F/_ y A
21nfcri 2301 . . . 4  |-  F/ y  x  e.  A
3 cbvrexfw.3 . . . 4  |-  F/ y
ph
42, 3nfan 1553 . . 3  |-  F/ y ( x  e.  A  /\  ph )
5 cbvrexfw.1 . . . . 5  |-  F/_ x A
65nfcri 2301 . . . 4  |-  F/ x  y  e.  A
7 cbvrexfw.4 . . . 4  |-  F/ x ps
86, 7nfan 1553 . . 3  |-  F/ x
( y  e.  A  /\  ps )
9 eleq1w 2226 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
10 cbvrexfw.5 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
119, 10anbi12d 465 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  ps )
) )
124, 8, 11cbvexv1 1740 . 2  |-  ( E. x ( x  e.  A  /\  ph )  <->  E. y ( y  e.  A  /\  ps )
)
13 df-rex 2449 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
14 df-rex 2449 . 2  |-  ( E. y  e.  A  ps  <->  E. y ( y  e.  A  /\  ps )
)
1512, 13, 143bitr4i 211 1  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   F/wnf 1448   E.wex 1480    e. wcel 2136   F/_wnfc 2294   E.wrex 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rex 2449
This theorem is referenced by:  nnwofdc  11967
  Copyright terms: Public domain W3C validator