ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprod2dlemstep Unicode version

Theorem fprod2dlemstep 11501
Description: Lemma for fprod2d 11502- induction step. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fprod2d.2  |-  ( ph  ->  A  e.  Fin )
fprod2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fprod2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
fprod2d.5  |-  ( ph  ->  -.  y  e.  x
)
fprod2d.6  |-  ( ph  ->  ( x  u.  {
y } )  C_  A )
fprod2dlemstep.x  |-  ( ph  ->  x  e.  Fin )
fprod2d.7  |-  ( ps  <->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )
Assertion
Ref Expression
fprod2dlemstep  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
Distinct variable groups:    A, j, k    B, k, z    z, C    D, j, k    ph, j    x, j    y, j, z    ph, k    x, k    y,
k, z    ph, z    x, z    y, z
Allowed substitution hints:    ph( x, y)    ps( x, y, z, j, k)    A( x, y, z)    B( x, y, j)    C( x, y, j, k)    D( x, y, z)

Proof of Theorem fprod2dlemstep
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
2 fprod2d.7 . . . 4  |-  ( ps  <->  prod_
j  e.  x  prod_ k  e.  B  C  = 
prod_ z  e.  U_  j  e.  x  ( {
j }  X.  B
) D )
31, 2sylib 121 . . 3  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
4 nfcv 2299 . . . . . 6  |-  F/_ m prod_ k  e.  B  C
5 nfcsb1v 3064 . . . . . . 7  |-  F/_ j [_ m  /  j ]_ B
6 nfcsb1v 3064 . . . . . . 7  |-  F/_ j [_ m  /  j ]_ C
75, 6nfcprod 11434 . . . . . 6  |-  F/_ j prod_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C
8 csbeq1a 3040 . . . . . . 7  |-  ( j  =  m  ->  B  =  [_ m  /  j ]_ B )
9 csbeq1a 3040 . . . . . . . 8  |-  ( j  =  m  ->  C  =  [_ m  /  j ]_ C )
109adantr 274 . . . . . . 7  |-  ( ( j  =  m  /\  k  e.  B )  ->  C  =  [_ m  /  j ]_ C
)
118, 10prodeq12dv 11448 . . . . . 6  |-  ( j  =  m  ->  prod_ k  e.  B  C  = 
prod_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C )
124, 7, 11cbvprodi 11439 . . . . 5  |-  prod_ j  e.  { y } prod_ k  e.  B  C  = 
prod_ m  e.  { y } prod_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C
13 fprod2d.6 . . . . . . . . 9  |-  ( ph  ->  ( x  u.  {
y } )  C_  A )
1413unssbd 3285 . . . . . . . 8  |-  ( ph  ->  { y }  C_  A )
15 vex 2715 . . . . . . . . 9  |-  y  e. 
_V
1615snss 3685 . . . . . . . 8  |-  ( y  e.  A  <->  { y }  C_  A )
1714, 16sylibr 133 . . . . . . 7  |-  ( ph  ->  y  e.  A )
18 fprod2d.3 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
1918ralrimiva 2530 . . . . . . . . 9  |-  ( ph  ->  A. j  e.  A  B  e.  Fin )
20 nfcsb1v 3064 . . . . . . . . . . 11  |-  F/_ j [_ y  /  j ]_ B
2120nfel1 2310 . . . . . . . . . 10  |-  F/ j
[_ y  /  j ]_ B  e.  Fin
22 csbeq1a 3040 . . . . . . . . . . 11  |-  ( j  =  y  ->  B  =  [_ y  /  j ]_ B )
2322eleq1d 2226 . . . . . . . . . 10  |-  ( j  =  y  ->  ( B  e.  Fin  <->  [_ y  / 
j ]_ B  e.  Fin ) )
2421, 23rspc 2810 . . . . . . . . 9  |-  ( y  e.  A  ->  ( A. j  e.  A  B  e.  Fin  ->  [_ y  /  j ]_ B  e.  Fin ) )
2517, 19, 24sylc 62 . . . . . . . 8  |-  ( ph  ->  [_ y  /  j ]_ B  e.  Fin )
26 fprod2d.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
2726ralrimivva 2539 . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  A  A. k  e.  B  C  e.  CC )
28 nfcsb1v 3064 . . . . . . . . . . . . 13  |-  F/_ j [_ y  /  j ]_ C
2928nfel1 2310 . . . . . . . . . . . 12  |-  F/ j
[_ y  /  j ]_ C  e.  CC
3020, 29nfralw 2494 . . . . . . . . . . 11  |-  F/ j A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC
31 csbeq1a 3040 . . . . . . . . . . . . 13  |-  ( j  =  y  ->  C  =  [_ y  /  j ]_ C )
3231eleq1d 2226 . . . . . . . . . . . 12  |-  ( j  =  y  ->  ( C  e.  CC  <->  [_ y  / 
j ]_ C  e.  CC ) )
3322, 32raleqbidv 2664 . . . . . . . . . . 11  |-  ( j  =  y  ->  ( A. k  e.  B  C  e.  CC  <->  A. k  e.  [_  y  /  j ]_ B [_ y  / 
j ]_ C  e.  CC ) )
3430, 33rspc 2810 . . . . . . . . . 10  |-  ( y  e.  A  ->  ( A. j  e.  A  A. k  e.  B  C  e.  CC  ->  A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC ) )
3517, 27, 34sylc 62 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )
3635r19.21bi 2545 . . . . . . . 8  |-  ( (
ph  /\  k  e.  [_ y  /  j ]_ B )  ->  [_ y  /  j ]_ C  e.  CC )
3725, 36fprodcl 11486 . . . . . . 7  |-  ( ph  ->  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )
38 csbeq1 3034 . . . . . . . . 9  |-  ( m  =  y  ->  [_ m  /  j ]_ B  =  [_ y  /  j ]_ B )
39 csbeq1 3034 . . . . . . . . . 10  |-  ( m  =  y  ->  [_ m  /  j ]_ C  =  [_ y  /  j ]_ C )
4039adantr 274 . . . . . . . . 9  |-  ( ( m  =  y  /\  k  e.  [_ m  / 
j ]_ B )  ->  [_ m  /  j ]_ C  =  [_ y  /  j ]_ C
)
4138, 40prodeq12dv 11448 . . . . . . . 8  |-  ( m  =  y  ->  prod_ k  e.  [_  m  / 
j ]_ B [_ m  /  j ]_ C  =  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C )
4241prodsn 11472 . . . . . . 7  |-  ( ( y  e.  A  /\  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )  ->  prod_ m  e.  {
y } prod_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C  =  prod_ k  e.  [_  y  / 
j ]_ B [_ y  /  j ]_ C
)
4317, 37, 42syl2anc 409 . . . . . 6  |-  ( ph  ->  prod_ m  e.  {
y } prod_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C  =  prod_ k  e.  [_  y  / 
j ]_ B [_ y  /  j ]_ C
)
44 nfcv 2299 . . . . . . . 8  |-  F/_ m [_ y  /  j ]_ C
45 nfcsb1v 3064 . . . . . . . 8  |-  F/_ k [_ m  /  k ]_ [_ y  /  j ]_ C
46 csbeq1a 3040 . . . . . . . 8  |-  ( k  =  m  ->  [_ y  /  j ]_ C  =  [_ m  /  k ]_ [_ y  /  j ]_ C )
4744, 45, 46cbvprodi 11439 . . . . . . 7  |-  prod_ k  e.  [_  y  /  j ]_ B [_ y  / 
j ]_ C  =  prod_ m  e.  [_  y  / 
j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C
48 csbeq1 3034 . . . . . . . . 9  |-  ( m  =  ( 2nd `  z
)  ->  [_ m  / 
k ]_ [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
49 snfig 6752 . . . . . . . . . . 11  |-  ( y  e.  _V  ->  { y }  e.  Fin )
5049elv 2716 . . . . . . . . . 10  |-  { y }  e.  Fin
51 xpfi 6867 . . . . . . . . . 10  |-  ( ( { y }  e.  Fin  /\  [_ y  / 
j ]_ B  e.  Fin )  ->  ( { y }  X.  [_ y  /  j ]_ B
)  e.  Fin )
5250, 25, 51sylancr 411 . . . . . . . . 9  |-  ( ph  ->  ( { y }  X.  [_ y  / 
j ]_ B )  e. 
Fin )
53 2ndconst 6163 . . . . . . . . . 10  |-  ( y  e.  A  ->  ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B
) ) : ( { y }  X.  [_ y  /  j ]_ B ) -1-1-onto-> [_ y  /  j ]_ B )
5417, 53syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B ) ) : ( { y }  X.  [_ y  / 
j ]_ B ) -1-1-onto-> [_ y  /  j ]_ B
)
55 fvres 5489 . . . . . . . . . 10  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  ->  ( ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B
) ) `  z
)  =  ( 2nd `  z ) )
5655adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
( ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B ) ) `  z )  =  ( 2nd `  z ) )
5745nfel1 2310 . . . . . . . . . . 11  |-  F/ k
[_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC
5846eleq1d 2226 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( [_ y  /  j ]_ C  e.  CC  <->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC )
)
5957, 58rspc 2810 . . . . . . . . . 10  |-  ( m  e.  [_ y  / 
j ]_ B  ->  ( A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC  ->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC ) )
6035, 59mpan9 279 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  [_ y  /  j ]_ B )  ->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC )
6148, 52, 54, 56, 60fprodf1o 11467 . . . . . . . 8  |-  ( ph  ->  prod_ m  e.  [_  y  /  j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C )
62 elxp 4600 . . . . . . . . . . . 12  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  <->  E. m E. k
( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) ) )
63 nfv 1508 . . . . . . . . . . . . . . 15  |-  F/ j  z  =  <. m ,  k >.
64 nfv 1508 . . . . . . . . . . . . . . . 16  |-  F/ j  m  e.  { y }
6520nfcri 2293 . . . . . . . . . . . . . . . 16  |-  F/ j  k  e.  [_ y  /  j ]_ B
6664, 65nfan 1545 . . . . . . . . . . . . . . 15  |-  F/ j ( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )
6763, 66nfan 1545 . . . . . . . . . . . . . 14  |-  F/ j ( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )
6867nfex 1617 . . . . . . . . . . . . 13  |-  F/ j E. k ( z  =  <. m ,  k
>.  /\  ( m  e. 
{ y }  /\  k  e.  [_ y  / 
j ]_ B ) )
69 nfv 1508 . . . . . . . . . . . . 13  |-  F/ m E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )
70 opeq1 3741 . . . . . . . . . . . . . . . 16  |-  ( m  =  j  ->  <. m ,  k >.  =  <. j ,  k >. )
7170eqeq2d 2169 . . . . . . . . . . . . . . 15  |-  ( m  =  j  ->  (
z  =  <. m ,  k >.  <->  z  =  <. j ,  k >.
) )
72 eleq1w 2218 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  j  ->  (
m  e.  { y }  <->  j  e.  {
y } ) )
73 velsn 3577 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  { y }  <-> 
j  =  y )
7472, 73bitrdi 195 . . . . . . . . . . . . . . . . 17  |-  ( m  =  j  ->  (
m  e.  { y }  <->  j  =  y ) )
7574anbi1d 461 . . . . . . . . . . . . . . . 16  |-  ( m  =  j  ->  (
( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )  <->  ( j  =  y  /\  k  e.  [_ y  /  j ]_ B ) ) )
7622eleq2d 2227 . . . . . . . . . . . . . . . . 17  |-  ( j  =  y  ->  (
k  e.  B  <->  k  e.  [_ y  /  j ]_ B ) )
7776pm5.32i 450 . . . . . . . . . . . . . . . 16  |-  ( ( j  =  y  /\  k  e.  B )  <->  ( j  =  y  /\  k  e.  [_ y  / 
j ]_ B ) )
7875, 77bitr4di 197 . . . . . . . . . . . . . . 15  |-  ( m  =  j  ->  (
( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )  <->  ( j  =  y  /\  k  e.  B ) ) )
7971, 78anbi12d 465 . . . . . . . . . . . . . 14  |-  ( m  =  j  ->  (
( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )  <->  ( z  =  <. j ,  k
>.  /\  ( j  =  y  /\  k  e.  B ) ) ) )
8079exbidv 1805 . . . . . . . . . . . . 13  |-  ( m  =  j  ->  ( E. k ( z  = 
<. m ,  k >.  /\  ( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B ) )  <->  E. k
( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
) ) )
8168, 69, 80cbvexv1 1732 . . . . . . . . . . . 12  |-  ( E. m E. k ( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )  <->  E. j E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) ) )
8262, 81bitri 183 . . . . . . . . . . 11  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  <->  E. j E. k
( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
) )
83 nfv 1508 . . . . . . . . . . . 12  |-  F/ j
ph
84 nfcv 2299 . . . . . . . . . . . . . 14  |-  F/_ j
( 2nd `  z
)
8584, 28nfcsbw 3067 . . . . . . . . . . . . 13  |-  F/_ j [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C
8685nfeq2 2311 . . . . . . . . . . . 12  |-  F/ j  D  =  [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C
87 nfv 1508 . . . . . . . . . . . . 13  |-  F/ k
ph
88 nfcsb1v 3064 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C
8988nfeq2 2311 . . . . . . . . . . . . 13  |-  F/ k  D  =  [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C
90 fprod2d.1 . . . . . . . . . . . . . . . 16  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
9190ad2antlr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  C )
9231ad2antrl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  C  =  [_ y  /  j ]_ C )
93 fveq2 5465 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  <. j ,  k
>.  ->  ( 2nd `  z
)  =  ( 2nd `  <. j ,  k
>. ) )
94 vex 2715 . . . . . . . . . . . . . . . . . . 19  |-  j  e. 
_V
95 vex 2715 . . . . . . . . . . . . . . . . . . 19  |-  k  e. 
_V
9694, 95op2nd 6089 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  <. j ,  k
>. )  =  k
9793, 96eqtr2di 2207 . . . . . . . . . . . . . . . . 17  |-  ( z  =  <. j ,  k
>.  ->  k  =  ( 2nd `  z ) )
9897ad2antlr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  k  =  ( 2nd `  z ) )
99 csbeq1a 3040 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( 2nd `  z
)  ->  [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
10098, 99syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
10191, 92, 1003eqtrd 2194 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C )
102101expl 376 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10387, 89, 102exlimd 1577 . . . . . . . . . . . 12  |-  ( ph  ->  ( E. k ( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10483, 86, 103exlimd 1577 . . . . . . . . . . 11  |-  ( ph  ->  ( E. j E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10582, 104syl5bi 151 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
106105imp 123 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  ->  D  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C )
107106prodeq2dv 11445 . . . . . . . 8  |-  ( ph  ->  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B ) D  = 
prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B ) [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C )
10861, 107eqtr4d 2193 . . . . . . 7  |-  ( ph  ->  prod_ m  e.  [_  y  /  j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
10947, 108syl5eq 2202 . . . . . 6  |-  ( ph  ->  prod_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
11043, 109eqtrd 2190 . . . . 5  |-  ( ph  ->  prod_ m  e.  {
y } prod_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
11112, 110syl5eq 2202 . . . 4  |-  ( ph  ->  prod_ j  e.  {
y } prod_ k  e.  B  C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
112111adantr 274 . . 3  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  {
y } prod_ k  e.  B  C  =  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
1133, 112oveq12d 5836 . 2  |-  ( (
ph  /\  ps )  ->  ( prod_ j  e.  x  prod_ k  e.  B  C  x.  prod_ j  e.  {
y } prod_ k  e.  B  C )  =  ( prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  x.  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
114 fprod2d.5 . . . . 5  |-  ( ph  ->  -.  y  e.  x
)
115 disjsn 3621 . . . . 5  |-  ( ( x  i^i  { y } )  =  (/)  <->  -.  y  e.  x )
116114, 115sylibr 133 . . . 4  |-  ( ph  ->  ( x  i^i  {
y } )  =  (/) )
117 eqidd 2158 . . . 4  |-  ( ph  ->  ( x  u.  {
y } )  =  ( x  u.  {
y } ) )
118 fprod2dlemstep.x . . . . 5  |-  ( ph  ->  x  e.  Fin )
11915a1i 9 . . . . 5  |-  ( ph  ->  y  e.  _V )
120 unsnfi 6856 . . . . 5  |-  ( ( x  e.  Fin  /\  y  e.  _V  /\  -.  y  e.  x )  ->  ( x  u.  {
y } )  e. 
Fin )
121118, 119, 114, 120syl3anc 1220 . . . 4  |-  ( ph  ->  ( x  u.  {
y } )  e. 
Fin )
12213sselda 3128 . . . . 5  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
j  e.  A )
12326anassrs 398 . . . . . 6  |-  ( ( ( ph  /\  j  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
12418, 123fprodcl 11486 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  prod_ k  e.  B  C  e.  CC )
125122, 124syldan 280 . . . 4  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  ->  prod_ k  e.  B  C  e.  CC )
126116, 117, 121, 125fprodsplit 11476 . . 3  |-  ( ph  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  ( prod_ j  e.  x  prod_ k  e.  B  C  x.  prod_ j  e.  {
y } prod_ k  e.  B  C )
)
127126adantr 274 . 2  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  ( prod_ j  e.  x  prod_ k  e.  B  C  x.  prod_ j  e.  {
y } prod_ k  e.  B  C )
)
128 eliun 3853 . . . . . . . . . 10  |-  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  <->  E. j  e.  x  z  e.  ( {
j }  X.  B
) )
129 xp1st 6107 . . . . . . . . . . . . . 14  |-  ( z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  { j } )
130 elsni 3578 . . . . . . . . . . . . . 14  |-  ( ( 1st `  z )  e.  { j }  ->  ( 1st `  z
)  =  j )
131129, 130syl 14 . . . . . . . . . . . . 13  |-  ( z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  =  j )
132131eleq1d 2226 . . . . . . . . . . . 12  |-  ( z  e.  ( { j }  X.  B )  ->  ( ( 1st `  z )  e.  x  <->  j  e.  x ) )
133132biimparc 297 . . . . . . . . . . 11  |-  ( ( j  e.  x  /\  z  e.  ( {
j }  X.  B
) )  ->  ( 1st `  z )  e.  x )
134133rexlimiva 2569 . . . . . . . . . 10  |-  ( E. j  e.  x  z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  x )
135128, 134sylbi 120 . . . . . . . . 9  |-  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  x )
136 xp1st 6107 . . . . . . . . 9  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  ->  ( 1st `  z )  e.  {
y } )
137135, 136anim12i 336 . . . . . . . 8  |-  ( ( z  e.  U_ j  e.  x  ( {
j }  X.  B
)  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
( ( 1st `  z
)  e.  x  /\  ( 1st `  z )  e.  { y } ) )
138 elin 3290 . . . . . . . 8  |-  ( z  e.  ( U_ j  e.  x  ( {
j }  X.  B
)  i^i  ( {
y }  X.  [_ y  /  j ]_ B
) )  <->  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  /\  z  e.  ( { y }  X.  [_ y  / 
j ]_ B ) ) )
139 elin 3290 . . . . . . . 8  |-  ( ( 1st `  z )  e.  ( x  i^i 
{ y } )  <-> 
( ( 1st `  z
)  e.  x  /\  ( 1st `  z )  e.  { y } ) )
140137, 138, 1393imtr4i 200 . . . . . . 7  |-  ( z  e.  ( U_ j  e.  x  ( {
j }  X.  B
)  i^i  ( {
y }  X.  [_ y  /  j ]_ B
) )  ->  ( 1st `  z )  e.  ( x  i^i  {
y } ) )
141116eleq2d 2227 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  z
)  e.  ( x  i^i  { y } )  <->  ( 1st `  z
)  e.  (/) ) )
142 noel 3398 . . . . . . . . 9  |-  -.  ( 1st `  z )  e.  (/)
143142pm2.21i 636 . . . . . . . 8  |-  ( ( 1st `  z )  e.  (/)  ->  z  e.  (/) )
144141, 143syl6bi 162 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  z
)  e.  ( x  i^i  { y } )  ->  z  e.  (/) ) )
145140, 144syl5 32 . . . . . 6  |-  ( ph  ->  ( z  e.  (
U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
z  e.  (/) ) )
146145ssrdv 3134 . . . . 5  |-  ( ph  ->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  C_  (/) )
147 ss0 3434 . . . . 5  |-  ( (
U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B ) )  C_  (/) 
->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  =  (/) )
148146, 147syl 14 . . . 4  |-  ( ph  ->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  =  (/) )
149 iunxun 3928 . . . . . 6  |-  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  =  (
U_ j  e.  x  ( { j }  X.  B )  u.  U_ j  e.  { y }  ( { j }  X.  B ) )
150 nfcv 2299 . . . . . . . . 9  |-  F/_ m
( { j }  X.  B )
151 nfcv 2299 . . . . . . . . . 10  |-  F/_ j { m }
152151, 5nfxp 4610 . . . . . . . . 9  |-  F/_ j
( { m }  X.  [_ m  /  j ]_ B )
153 sneq 3571 . . . . . . . . . 10  |-  ( j  =  m  ->  { j }  =  { m } )
154153, 8xpeq12d 4608 . . . . . . . . 9  |-  ( j  =  m  ->  ( { j }  X.  B )  =  ( { m }  X.  [_ m  /  j ]_ B ) )
155150, 152, 154cbviun 3886 . . . . . . . 8  |-  U_ j  e.  { y }  ( { j }  X.  B )  =  U_ m  e.  { y }  ( { m }  X.  [_ m  / 
j ]_ B )
156 sneq 3571 . . . . . . . . . 10  |-  ( m  =  y  ->  { m }  =  { y } )
157156, 38xpeq12d 4608 . . . . . . . . 9  |-  ( m  =  y  ->  ( { m }  X.  [_ m  /  j ]_ B )  =  ( { y }  X.  [_ y  /  j ]_ B ) )
15815, 157iunxsn 3925 . . . . . . . 8  |-  U_ m  e.  { y }  ( { m }  X.  [_ m  /  j ]_ B )  =  ( { y }  X.  [_ y  /  j ]_ B )
159155, 158eqtri 2178 . . . . . . 7  |-  U_ j  e.  { y }  ( { j }  X.  B )  =  ( { y }  X.  [_ y  /  j ]_ B )
160159uneq2i 3258 . . . . . 6  |-  ( U_ j  e.  x  ( { j }  X.  B )  u.  U_ j  e.  { y }  ( { j }  X.  B ) )  =  ( U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) )
161149, 160eqtri 2178 . . . . 5  |-  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  =  (
U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) )
162161a1i 9 . . . 4  |-  ( ph  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  =  ( U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) ) )
163 snfig 6752 . . . . . . . 8  |-  ( j  e.  _V  ->  { j }  e.  Fin )
164163elv 2716 . . . . . . 7  |-  { j }  e.  Fin
165122, 18syldan 280 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  ->  B  e.  Fin )
166 xpfi 6867 . . . . . . 7  |-  ( ( { j }  e.  Fin  /\  B  e.  Fin )  ->  ( { j }  X.  B )  e.  Fin )
167164, 165, 166sylancr 411 . . . . . 6  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( { j }  X.  B )  e. 
Fin )
168167ralrimiva 2530 . . . . 5  |-  ( ph  ->  A. j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
169 disjsnxp 6178 . . . . . 6  |- Disj  j  e.  ( x  u.  {
y } ) ( { j }  X.  B )
170169a1i 9 . . . . 5  |-  ( ph  -> Disj  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )
171 iunfidisj 6883 . . . . 5  |-  ( ( ( x  u.  {
y } )  e. 
Fin  /\  A. j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  e.  Fin  /\ Disj  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
172121, 168, 170, 171syl3anc 1220 . . . 4  |-  ( ph  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
173 eliun 3853 . . . . . 6  |-  ( z  e.  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  <->  E. j  e.  ( x  u.  {
y } ) z  e.  ( { j }  X.  B ) )
174 elxp 4600 . . . . . . . 8  |-  ( z  e.  ( { j }  X.  B )  <->  E. m E. k ( z  =  <. m ,  k >.  /\  (
m  e.  { j }  /\  k  e.  B ) ) )
175 simprl 521 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  z  =  <. m ,  k >. )
176 simprrl 529 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  m  e.  {
j } )
177 elsni 3578 . . . . . . . . . . . . . . 15  |-  ( m  e.  { j }  ->  m  =  j )
178176, 177syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  m  =  j )
179178opeq1d 3747 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  <. m ,  k
>.  =  <. j ,  k >. )
180175, 179eqtrd 2190 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  z  =  <. j ,  k >. )
181180, 90syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  D  =  C )
182 simpll 519 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  ph )
183122adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  j  e.  A
)
184 simprrr 530 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  k  e.  B
)
185182, 183, 184, 26syl12anc 1218 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  C  e.  CC )
186181, 185eqeltrd 2234 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  D  e.  CC )
187186ex 114 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) )  ->  D  e.  CC )
)
188187exlimdvv 1877 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( E. m E. k ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) )  ->  D  e.  CC )
)
189174, 188syl5bi 151 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( z  e.  ( { j }  X.  B )  ->  D  e.  CC ) )
190189rexlimdva 2574 . . . . . 6  |-  ( ph  ->  ( E. j  e.  ( x  u.  {
y } ) z  e.  ( { j }  X.  B )  ->  D  e.  CC ) )
191173, 190syl5bi 151 . . . . 5  |-  ( ph  ->  ( z  e.  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B )  ->  D  e.  CC )
)
192191imp 123 . . . 4  |-  ( (
ph  /\  z  e.  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )  ->  D  e.  CC )
193148, 162, 172, 192fprodsplit 11476 . . 3  |-  ( ph  ->  prod_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D  =  ( prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  x.  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
194193adantr 274 . 2  |-  ( (
ph  /\  ps )  ->  prod_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D  =  ( prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  x.  prod_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
195113, 127, 1943eqtr4d 2200 1  |-  ( (
ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y } ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335   E.wex 1472    e. wcel 2128   A.wral 2435   E.wrex 2436   _Vcvv 2712   [_csb 3031    u. cun 3100    i^i cin 3101    C_ wss 3102   (/)c0 3394   {csn 3560   <.cop 3563   U_ciun 3849  Disj wdisj 3942    X. cxp 4581    |` cres 4585   -1-1-onto->wf1o 5166   ` cfv 5167  (class class class)co 5818   1stc1st 6080   2ndc2nd 6081   Fincfn 6678   CCcc 7713    x. cmul 7720   prod_cprod 11429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-disj 3943  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-frec 6332  df-1o 6357  df-oadd 6361  df-er 6473  df-en 6679  df-dom 6680  df-fin 6681  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-fz 9895  df-fzo 10024  df-seqfrec 10327  df-exp 10401  df-ihash 10632  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158  df-proddc 11430
This theorem is referenced by:  fprod2d  11502
  Copyright terms: Public domain W3C validator