ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemnewy Unicode version

Theorem bezoutlemnewy 11991
Description: Lemma for Bézout's identity. The is-bezout predicate holds for  ( y  mod 
W ). (Contributed by Jim Kingdon, 6-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemstep.is-bezout  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
bezoutlemstep.a  |-  ( th 
->  A  e.  NN0 )
bezoutlemstep.b  |-  ( th 
->  B  e.  NN0 )
bezoutlemstep.w  |-  ( th 
->  W  e.  NN )
bezoutlemstep.y-is-bezout  |-  ( th 
->  [ y  /  r ] ph )
bezoutlemstep.y-nn0  |-  ( th 
->  y  e.  NN0 )
bezoutlemstep.w-is-bezout  |-  ( th 
->  [. W  /  r ]. ph )
Assertion
Ref Expression
bezoutlemnewy  |-  ( th 
->  [. ( y  mod 
W )  /  r ]. ph )
Distinct variable groups:    A, s, r, t    B, s, r, t    W, s, r, t    y,
s, t    ph, s, t    th, s, t    y, r
Allowed substitution hints:    ph( y, r)    th( y,
r)    A( y)    B( y)    W( y)

Proof of Theorem bezoutlemnewy
Dummy variables  j  k  q  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemstep.w-is-bezout . . 3  |-  ( th 
->  [. W  /  r ]. ph )
2 bezoutlemstep.is-bezout . . . . 5  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
32sbcbii 3022 . . . 4  |-  ( [. W  /  r ]. ph  <->  [. W  / 
r ]. E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )
4 bezoutlemstep.w . . . . 5  |-  ( th 
->  W  e.  NN )
5 eqeq1 2184 . . . . . . 7  |-  ( r  =  W  ->  (
r  =  ( ( A  x.  s )  +  ( B  x.  t ) )  <->  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) ) )
652rexbidv 2502 . . . . . 6  |-  ( r  =  W  ->  ( E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  W  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
76sbcieg 2995 . . . . 5  |-  ( W  e.  NN  ->  ( [. W  /  r ]. E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  W  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
84, 7syl 14 . . . 4  |-  ( th 
->  ( [. W  / 
r ]. E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s
)  +  ( B  x.  t ) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  W  =  ( ( A  x.  s )  +  ( B  x.  t
) ) ) )
93, 8bitrid 192 . . 3  |-  ( th 
->  ( [. W  / 
r ]. ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  W  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
101, 9mpbid 147 . 2  |-  ( th 
->  E. s  e.  ZZ  E. t  e.  ZZ  W  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
11 bezoutlemstep.y-is-bezout . . . . . . 7  |-  ( th 
->  [ y  /  r ] ph )
12 oveq2 5882 . . . . . . . . . . . . 13  |-  ( s  =  u  ->  ( A  x.  s )  =  ( A  x.  u ) )
1312oveq1d 5889 . . . . . . . . . . . 12  |-  ( s  =  u  ->  (
( A  x.  s
)  +  ( B  x.  t ) )  =  ( ( A  x.  u )  +  ( B  x.  t
) ) )
1413eqeq2d 2189 . . . . . . . . . . 11  |-  ( s  =  u  ->  (
r  =  ( ( A  x.  s )  +  ( B  x.  t ) )  <->  r  =  ( ( A  x.  u )  +  ( B  x.  t ) ) ) )
15 oveq2 5882 . . . . . . . . . . . . 13  |-  ( t  =  v  ->  ( B  x.  t )  =  ( B  x.  v ) )
1615oveq2d 5890 . . . . . . . . . . . 12  |-  ( t  =  v  ->  (
( A  x.  u
)  +  ( B  x.  t ) )  =  ( ( A  x.  u )  +  ( B  x.  v
) ) )
1716eqeq2d 2189 . . . . . . . . . . 11  |-  ( t  =  v  ->  (
r  =  ( ( A  x.  u )  +  ( B  x.  t ) )  <->  r  =  ( ( A  x.  u )  +  ( B  x.  v ) ) ) )
1814, 17cbvrex2v 2717 . . . . . . . . . 10  |-  ( E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  r  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) )
192, 18bitri 184 . . . . . . . . 9  |-  ( ph  <->  E. u  e.  ZZ  E. v  e.  ZZ  r  =  ( ( A  x.  u )  +  ( B  x.  v
) ) )
2019sbbii 1765 . . . . . . . 8  |-  ( [ y  /  r ]
ph 
<->  [ y  /  r ] E. u  e.  ZZ  E. v  e.  ZZ  r  =  ( ( A  x.  u )  +  ( B  x.  v
) ) )
21 nfv 1528 . . . . . . . . 9  |-  F/ r E. u  e.  ZZ  E. v  e.  ZZ  y  =  ( ( A  x.  u )  +  ( B  x.  v
) )
22 eqeq1 2184 . . . . . . . . . 10  |-  ( r  =  y  ->  (
r  =  ( ( A  x.  u )  +  ( B  x.  v ) )  <->  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) ) )
23222rexbidv 2502 . . . . . . . . 9  |-  ( r  =  y  ->  ( E. u  e.  ZZ  E. v  e.  ZZ  r  =  ( ( A  x.  u )  +  ( B  x.  v
) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  y  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) ) )
2421, 23sbie 1791 . . . . . . . 8  |-  ( [ y  /  r ] E. u  e.  ZZ  E. v  e.  ZZ  r  =  ( ( A  x.  u )  +  ( B  x.  v
) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  y  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) )
2520, 24bitri 184 . . . . . . 7  |-  ( [ y  /  r ]
ph 
<->  E. u  e.  ZZ  E. v  e.  ZZ  y  =  ( ( A  x.  u )  +  ( B  x.  v
) ) )
2611, 25sylib 122 . . . . . 6  |-  ( th 
->  E. u  e.  ZZ  E. v  e.  ZZ  y  =  ( ( A  x.  u )  +  ( B  x.  v
) ) )
2726ad2antrr 488 . . . . 5  |-  ( ( ( th  /\  (
s  e.  ZZ  /\  t  e.  ZZ )
)  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  ->  E. u  e.  ZZ  E. v  e.  ZZ  y  =  ( ( A  x.  u
)  +  ( B  x.  v ) ) )
28 bezoutlemstep.y-nn0 . . . . . . . . . . 11  |-  ( th 
->  y  e.  NN0 )
2928ad4antr 494 . . . . . . . . . 10  |-  ( ( ( ( ( th 
/\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  y  e.  NN0 )
3029nn0zd 9371 . . . . . . . . 9  |-  ( ( ( ( ( th 
/\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  y  e.  ZZ )
314ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( th 
/\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  W  e.  NN )
3230, 31zmodcld 10342 . . . . . . . . 9  |-  ( ( ( ( ( th 
/\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  ( y  mod 
W )  e.  NN0 )
33 zq 9624 . . . . . . . . . . 11  |-  ( y  e.  ZZ  ->  y  e.  QQ )
3430, 33syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( th 
/\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  y  e.  QQ )
3531nnzd 9372 . . . . . . . . . . 11  |-  ( ( ( ( ( th 
/\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  W  e.  ZZ )
36 zq 9624 . . . . . . . . . . 11  |-  ( W  e.  ZZ  ->  W  e.  QQ )
3735, 36syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( th 
/\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  W  e.  QQ )
3831nngt0d 8961 . . . . . . . . . 10  |-  ( ( ( ( ( th 
/\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  0  <  W
)
39 modqlt 10330 . . . . . . . . . 10  |-  ( ( y  e.  QQ  /\  W  e.  QQ  /\  0  <  W )  ->  (
y  mod  W )  <  W )
4034, 37, 38, 39syl3anc 1238 . . . . . . . . 9  |-  ( ( ( ( ( th 
/\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  ( y  mod 
W )  <  W
)
41 eqid 2177 . . . . . . . . . 10  |-  ( y  mod  W )  =  ( y  mod  W
)
42 modremain 11928 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  W  e.  NN  /\  (
( y  mod  W
)  e.  NN0  /\  ( y  mod  W
)  <  W )
)  ->  ( (
y  mod  W )  =  ( y  mod 
W )  <->  E. q  e.  ZZ  ( ( q  x.  W )  +  ( y  mod  W
) )  =  y ) )
4341, 42mpbii 148 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  W  e.  NN  /\  (
( y  mod  W
)  e.  NN0  /\  ( y  mod  W
)  <  W )
)  ->  E. q  e.  ZZ  ( ( q  x.  W )  +  ( y  mod  W
) )  =  y )
4430, 31, 32, 40, 43syl112anc 1242 . . . . . . . 8  |-  ( ( ( ( ( th 
/\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  E. q  e.  ZZ  ( ( q  x.  W )  +  ( y  mod  W ) )  =  y )
45 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  ->  u  e.  ZZ )
4645ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  u  e.  ZZ )
47 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
q  e.  ZZ )
48 simplrl 535 . . . . . . . . . . . . . . 15  |-  ( ( ( th  /\  (
s  e.  ZZ  /\  t  e.  ZZ )
)  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  ->  s  e.  ZZ )
4948ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
s  e.  ZZ )
5047, 49zmulcld 9379 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( q  x.  s
)  e.  ZZ )
5146, 50zsubcld 9378 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( u  -  (
q  x.  s ) )  e.  ZZ )
52 simprr 531 . . . . . . . . . . . . . . 15  |-  ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  ->  v  e.  ZZ )
5352ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
v  e.  ZZ )
54 simplrr 536 . . . . . . . . . . . . . . . 16  |-  ( ( ( th  /\  (
s  e.  ZZ  /\  t  e.  ZZ )
)  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  ->  t  e.  ZZ )
5554ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
t  e.  ZZ )
5647, 55zmulcld 9379 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( q  x.  t
)  e.  ZZ )
5753, 56zsubcld 9378 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( v  -  (
q  x.  t ) )  e.  ZZ )
58 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )
59 simpr 110 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( th  /\  (
s  e.  ZZ  /\  t  e.  ZZ )
)  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  ->  W  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
6059ad3antrrr 492 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )
6160oveq2d 5890 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( q  x.  W
)  =  ( q  x.  ( ( A  x.  s )  +  ( B  x.  t
) ) ) )
6247zcnd 9374 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
q  e.  CC )
63 bezoutlemstep.a . . . . . . . . . . . . . . . . . . . . 21  |-  ( th 
->  A  e.  NN0 )
6463ad5antr 496 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  A  e.  NN0 )
6564nn0cnd 9229 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  A  e.  CC )
6649zcnd 9374 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
s  e.  CC )
6765, 66mulcld 7976 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( A  x.  s
)  e.  CC )
68 bezoutlemstep.b . . . . . . . . . . . . . . . . . . . . 21  |-  ( th 
->  B  e.  NN0 )
6968ad5antr 496 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  B  e.  NN0 )
7069nn0cnd 9229 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  B  e.  CC )
7155zcnd 9374 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
t  e.  CC )
7270, 71mulcld 7976 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( B  x.  t
)  e.  CC )
7362, 67, 72adddid 7980 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( q  x.  (
( A  x.  s
)  +  ( B  x.  t ) ) )  =  ( ( q  x.  ( A  x.  s ) )  +  ( q  x.  ( B  x.  t
) ) ) )
7462, 65, 66mul12d 8107 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( q  x.  ( A  x.  s )
)  =  ( A  x.  ( q  x.  s ) ) )
7562, 70, 71mul12d 8107 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( q  x.  ( B  x.  t )
)  =  ( B  x.  ( q  x.  t ) ) )
7674, 75oveq12d 5892 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( ( q  x.  ( A  x.  s
) )  +  ( q  x.  ( B  x.  t ) ) )  =  ( ( A  x.  ( q  x.  s ) )  +  ( B  x.  ( q  x.  t
) ) ) )
7761, 73, 763eqtrd 2214 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( q  x.  W
)  =  ( ( A  x.  ( q  x.  s ) )  +  ( B  x.  ( q  x.  t
) ) ) )
7858, 77oveq12d 5892 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( y  -  (
q  x.  W ) )  =  ( ( ( A  x.  u
)  +  ( B  x.  v ) )  -  ( ( A  x.  ( q  x.  s ) )  +  ( B  x.  (
q  x.  t ) ) ) ) )
79 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( ( q  x.  W )  +  ( y  mod  W ) )  =  y )
8028ad5antr 496 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
y  e.  NN0 )
8180nn0cnd 9229 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
y  e.  CC )
8231adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  W  e.  NN )
8382nncnd 8931 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  W  e.  CC )
8462, 83mulcld 7976 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( q  x.  W
)  e.  CC )
8534adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
y  e.  QQ )
8637adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  W  e.  QQ )
8738adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
0  <  W )
8885, 86, 87modqcld 10325 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( y  mod  W
)  e.  QQ )
89 qcn 9632 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  mod  W )  e.  QQ  ->  (
y  mod  W )  e.  CC )
9088, 89syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( y  mod  W
)  e.  CC )
9181, 84, 90subaddd 8284 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( ( y  -  ( q  x.  W
) )  =  ( y  mod  W )  <-> 
( ( q  x.  W )  +  ( y  mod  W ) )  =  y ) )
9279, 91mpbird 167 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( y  -  (
q  x.  W ) )  =  ( y  mod  W ) )
9346zcnd 9374 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  u  e.  CC )
9465, 93mulcld 7976 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( A  x.  u
)  e.  CC )
9553zcnd 9374 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
v  e.  CC )
9670, 95mulcld 7976 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( B  x.  v
)  e.  CC )
9762, 66mulcld 7976 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( q  x.  s
)  e.  CC )
9865, 97mulcld 7976 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( A  x.  (
q  x.  s ) )  e.  CC )
9962, 71mulcld 7976 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( q  x.  t
)  e.  CC )
10070, 99mulcld 7976 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( B  x.  (
q  x.  t ) )  e.  CC )
10194, 96, 98, 100addsub4d 8313 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( ( ( A  x.  u )  +  ( B  x.  v
) )  -  (
( A  x.  (
q  x.  s ) )  +  ( B  x.  ( q  x.  t ) ) ) )  =  ( ( ( A  x.  u
)  -  ( A  x.  ( q  x.  s ) ) )  +  ( ( B  x.  v )  -  ( B  x.  (
q  x.  t ) ) ) ) )
10278, 92, 1013eqtr3d 2218 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( y  mod  W
)  =  ( ( ( A  x.  u
)  -  ( A  x.  ( q  x.  s ) ) )  +  ( ( B  x.  v )  -  ( B  x.  (
q  x.  t ) ) ) ) )
10365, 93, 97subdid 8369 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( A  x.  (
u  -  ( q  x.  s ) ) )  =  ( ( A  x.  u )  -  ( A  x.  ( q  x.  s
) ) ) )
10470, 95, 99subdid 8369 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( B  x.  (
v  -  ( q  x.  t ) ) )  =  ( ( B  x.  v )  -  ( B  x.  ( q  x.  t
) ) ) )
105103, 104oveq12d 5892 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( ( A  x.  ( u  -  (
q  x.  s ) ) )  +  ( B  x.  ( v  -  ( q  x.  t ) ) ) )  =  ( ( ( A  x.  u
)  -  ( A  x.  ( q  x.  s ) ) )  +  ( ( B  x.  v )  -  ( B  x.  (
q  x.  t ) ) ) ) )
106102, 105eqtr4d 2213 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( y  mod  W
)  =  ( ( A  x.  ( u  -  ( q  x.  s ) ) )  +  ( B  x.  ( v  -  (
q  x.  t ) ) ) ) )
107 oveq2 5882 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( v  -  ( q  x.  t
) )  ->  ( B  x.  k )  =  ( B  x.  ( v  -  (
q  x.  t ) ) ) )
108107oveq2d 5890 . . . . . . . . . . . . . . 15  |-  ( k  =  ( v  -  ( q  x.  t
) )  ->  (
( A  x.  (
u  -  ( q  x.  s ) ) )  +  ( B  x.  k ) )  =  ( ( A  x.  ( u  -  ( q  x.  s
) ) )  +  ( B  x.  (
v  -  ( q  x.  t ) ) ) ) )
109108eqeq2d 2189 . . . . . . . . . . . . . 14  |-  ( k  =  ( v  -  ( q  x.  t
) )  ->  (
( y  mod  W
)  =  ( ( A  x.  ( u  -  ( q  x.  s ) ) )  +  ( B  x.  k ) )  <->  ( y  mod  W )  =  ( ( A  x.  (
u  -  ( q  x.  s ) ) )  +  ( B  x.  ( v  -  ( q  x.  t
) ) ) ) ) )
110109rspcev 2841 . . . . . . . . . . . . 13  |-  ( ( ( v  -  (
q  x.  t ) )  e.  ZZ  /\  ( y  mod  W
)  =  ( ( A  x.  ( u  -  ( q  x.  s ) ) )  +  ( B  x.  ( v  -  (
q  x.  t ) ) ) ) )  ->  E. k  e.  ZZ  ( y  mod  W
)  =  ( ( A  x.  ( u  -  ( q  x.  s ) ) )  +  ( B  x.  k ) ) )
11157, 106, 110syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  E. k  e.  ZZ  ( y  mod  W
)  =  ( ( A  x.  ( u  -  ( q  x.  s ) ) )  +  ( B  x.  k ) ) )
112 oveq2 5882 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( u  -  ( q  x.  s
) )  ->  ( A  x.  j )  =  ( A  x.  ( u  -  (
q  x.  s ) ) ) )
113112oveq1d 5889 . . . . . . . . . . . . . . 15  |-  ( j  =  ( u  -  ( q  x.  s
) )  ->  (
( A  x.  j
)  +  ( B  x.  k ) )  =  ( ( A  x.  ( u  -  ( q  x.  s
) ) )  +  ( B  x.  k
) ) )
114113eqeq2d 2189 . . . . . . . . . . . . . 14  |-  ( j  =  ( u  -  ( q  x.  s
) )  ->  (
( y  mod  W
)  =  ( ( A  x.  j )  +  ( B  x.  k ) )  <->  ( y  mod  W )  =  ( ( A  x.  (
u  -  ( q  x.  s ) ) )  +  ( B  x.  k ) ) ) )
115114rexbidv 2478 . . . . . . . . . . . . 13  |-  ( j  =  ( u  -  ( q  x.  s
) )  ->  ( E. k  e.  ZZ  ( y  mod  W
)  =  ( ( A  x.  j )  +  ( B  x.  k ) )  <->  E. k  e.  ZZ  ( y  mod 
W )  =  ( ( A  x.  (
u  -  ( q  x.  s ) ) )  +  ( B  x.  k ) ) ) )
116115rspcev 2841 . . . . . . . . . . . 12  |-  ( ( ( u  -  (
q  x.  s ) )  e.  ZZ  /\  E. k  e.  ZZ  (
y  mod  W )  =  ( ( A  x.  ( u  -  ( q  x.  s
) ) )  +  ( B  x.  k
) ) )  ->  E. j  e.  ZZ  E. k  e.  ZZ  (
y  mod  W )  =  ( ( A  x.  j )  +  ( B  x.  k
) ) )
11751, 111, 116syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  E. j  e.  ZZ  E. k  e.  ZZ  (
y  mod  W )  =  ( ( A  x.  j )  +  ( B  x.  k
) ) )
118 oveq2 5882 . . . . . . . . . . . . . 14  |-  ( j  =  s  ->  ( A  x.  j )  =  ( A  x.  s ) )
119118oveq1d 5889 . . . . . . . . . . . . 13  |-  ( j  =  s  ->  (
( A  x.  j
)  +  ( B  x.  k ) )  =  ( ( A  x.  s )  +  ( B  x.  k
) ) )
120119eqeq2d 2189 . . . . . . . . . . . 12  |-  ( j  =  s  ->  (
( y  mod  W
)  =  ( ( A  x.  j )  +  ( B  x.  k ) )  <->  ( y  mod  W )  =  ( ( A  x.  s
)  +  ( B  x.  k ) ) ) )
121 oveq2 5882 . . . . . . . . . . . . . 14  |-  ( k  =  t  ->  ( B  x.  k )  =  ( B  x.  t ) )
122121oveq2d 5890 . . . . . . . . . . . . 13  |-  ( k  =  t  ->  (
( A  x.  s
)  +  ( B  x.  k ) )  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
123122eqeq2d 2189 . . . . . . . . . . . 12  |-  ( k  =  t  ->  (
( y  mod  W
)  =  ( ( A  x.  s )  +  ( B  x.  k ) )  <->  ( y  mod  W )  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
124120, 123cbvrex2v 2717 . . . . . . . . . . 11  |-  ( E. j  e.  ZZ  E. k  e.  ZZ  (
y  mod  W )  =  ( ( A  x.  j )  +  ( B  x.  k
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  ( y  mod 
W )  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )
125117, 124sylib 122 . . . . . . . . . 10  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  E. s  e.  ZZ  E. t  e.  ZZ  (
y  mod  W )  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
12632adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( y  mod  W
)  e.  NN0 )
127 eqeq1 2184 . . . . . . . . . . . . 13  |-  ( r  =  ( y  mod 
W )  ->  (
r  =  ( ( A  x.  s )  +  ( B  x.  t ) )  <->  ( y  mod  W )  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
1281272rexbidv 2502 . . . . . . . . . . . 12  |-  ( r  =  ( y  mod 
W )  ->  ( E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  ( y  mod 
W )  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
129128sbcieg 2995 . . . . . . . . . . 11  |-  ( ( y  mod  W )  e.  NN0  ->  ( [. ( y  mod  W
)  /  r ]. E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  ( y  mod 
W )  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
130126, 129syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  -> 
( [. ( y  mod 
W )  /  r ]. E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  ( y  mod 
W )  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
131125, 130mpbird 167 . . . . . . . . 9  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  [. ( y  mod  W
)  /  r ]. E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
1322sbcbii 3022 . . . . . . . . 9  |-  ( [. ( y  mod  W
)  /  r ]. ph  <->  [. ( y  mod  W
)  /  r ]. E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
133131, 132sylibr 134 . . . . . . . 8  |-  ( ( ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  /\  ( q  e.  ZZ  /\  ( ( q  x.  W )  +  ( y  mod 
W ) )  =  y ) )  ->  [. ( y  mod  W
)  /  r ]. ph )
13444, 133rexlimddv 2599 . . . . . . 7  |-  ( ( ( ( ( th 
/\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  y  =  ( ( A  x.  u )  +  ( B  x.  v ) ) )  ->  [. ( y  mod 
W )  /  r ]. ph )
135134ex 115 . . . . . 6  |-  ( ( ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  ->  ( y  =  ( ( A  x.  u )  +  ( B  x.  v
) )  ->  [. (
y  mod  W )  /  r ]. ph )
)
136135rexlimdvva 2602 . . . . 5  |-  ( ( ( th  /\  (
s  e.  ZZ  /\  t  e.  ZZ )
)  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  ->  ( E. u  e.  ZZ  E. v  e.  ZZ  y  =  ( ( A  x.  u )  +  ( B  x.  v
) )  ->  [. (
y  mod  W )  /  r ]. ph )
)
13727, 136mpd 13 . . . 4  |-  ( ( ( th  /\  (
s  e.  ZZ  /\  t  e.  ZZ )
)  /\  W  =  ( ( A  x.  s )  +  ( B  x.  t ) ) )  ->  [. (
y  mod  W )  /  r ]. ph )
138137ex 115 . . 3  |-  ( ( th  /\  ( s  e.  ZZ  /\  t  e.  ZZ ) )  -> 
( W  =  ( ( A  x.  s
)  +  ( B  x.  t ) )  ->  [. ( y  mod 
W )  /  r ]. ph ) )
139138rexlimdvva 2602 . 2  |-  ( th 
->  ( E. s  e.  ZZ  E. t  e.  ZZ  W  =  ( ( A  x.  s
)  +  ( B  x.  t ) )  ->  [. ( y  mod 
W )  /  r ]. ph ) )
14010, 139mpd 13 1  |-  ( th 
->  [. ( y  mod 
W )  /  r ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   [wsb 1762    e. wcel 2148   E.wrex 2456   [.wsbc 2962   class class class wbr 4003  (class class class)co 5874   CCcc 7808   0cc0 7810    + caddc 7813    x. cmul 7815    < clt 7990    - cmin 8126   NNcn 8917   NN0cn0 9174   ZZcz 9251   QQcq 9617    mod cmo 10319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-n0 9175  df-z 9252  df-uz 9527  df-q 9618  df-rp 9652  df-fl 10267  df-mod 10320  df-seqfrec 10443  df-exp 10517  df-cj 10846  df-re 10847  df-im 10848  df-rsqrt 11002  df-abs 11003  df-dvds 11790
This theorem is referenced by:  bezoutlemstep  11992
  Copyright terms: Public domain W3C validator