| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvrexsv | GIF version | ||
| Description: Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| cbvrexsv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | nfs1v 1967 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 3 | sbequ12 1794 | . . 3 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 4 | 1, 2, 3 | cbvrex 2735 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑) |
| 5 | nfv 1551 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 6 | 5 | nfsb 1974 | . . 3 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
| 7 | nfv 1551 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | |
| 8 | sbequ 1863 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 9 | 6, 7, 8 | cbvrex 2735 | . 2 ⊢ (∃𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| 10 | 4, 9 | bitri 184 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1785 ∃wrex 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 |
| This theorem is referenced by: rspesbca 3083 rexxpf 4825 |
| Copyright terms: Public domain | W3C validator |