ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexsv GIF version

Theorem cbvrexsv 2755
Description: Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
cbvrexsv (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 [𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑦   𝑦,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem cbvrexsv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1551 . . 3 𝑧𝜑
2 nfs1v 1967 . . 3 𝑥[𝑧 / 𝑥]𝜑
3 sbequ12 1794 . . 3 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
41, 2, 3cbvrex 2735 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑧𝐴 [𝑧 / 𝑥]𝜑)
5 nfv 1551 . . . 4 𝑦𝜑
65nfsb 1974 . . 3 𝑦[𝑧 / 𝑥]𝜑
7 nfv 1551 . . 3 𝑧[𝑦 / 𝑥]𝜑
8 sbequ 1863 . . 3 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
96, 7, 8cbvrex 2735 . 2 (∃𝑧𝐴 [𝑧 / 𝑥]𝜑 ↔ ∃𝑦𝐴 [𝑦 / 𝑥]𝜑)
104, 9bitri 184 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1785  wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490
This theorem is referenced by:  rspesbca  3083  rexxpf  4825
  Copyright terms: Public domain W3C validator