ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralsv Unicode version

Theorem cbvralsv 2754
Description: Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
cbvralsv  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  [ y  /  x ] ph )
Distinct variable groups:    x, A    y, A    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem cbvralsv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1551 . . 3  |-  F/ z
ph
2 nfs1v 1967 . . 3  |-  F/ x [ z  /  x ] ph
3 sbequ12 1794 . . 3  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
41, 2, 3cbvral 2734 . 2  |-  ( A. x  e.  A  ph  <->  A. z  e.  A  [ z  /  x ] ph )
5 nfv 1551 . . . 4  |-  F/ y
ph
65nfsb 1974 . . 3  |-  F/ y [ z  /  x ] ph
7 nfv 1551 . . 3  |-  F/ z [ y  /  x ] ph
8 sbequ 1863 . . 3  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
96, 7, 8cbvral 2734 . 2  |-  ( A. z  e.  A  [
z  /  x ] ph 
<-> 
A. y  e.  A  [ y  /  x ] ph )
104, 9bitri 184 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1785   A.wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489
This theorem is referenced by:  sbralie  2756  rspsbc  3081  ralxpf  4824
  Copyright terms: Public domain W3C validator