![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvralsv | Unicode version |
Description: Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
cbvralsv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1538 |
. . 3
![]() ![]() ![]() ![]() | |
2 | nfs1v 1949 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | sbequ12 1781 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | cbvral 2711 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | nfv 1538 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 5 | nfsb 1956 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | nfv 1538 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | sbequ 1850 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 6, 7, 8 | cbvral 2711 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 4, 9 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 |
This theorem is referenced by: sbralie 2733 rspsbc 3057 ralxpf 4785 |
Copyright terms: Public domain | W3C validator |