ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralsv Unicode version

Theorem cbvralsv 2602
Description: Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
cbvralsv  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  [ y  /  x ] ph )
Distinct variable groups:    x, A    y, A    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem cbvralsv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1467 . . 3  |-  F/ z
ph
2 nfs1v 1864 . . 3  |-  F/ x [ z  /  x ] ph
3 sbequ12 1702 . . 3  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
41, 2, 3cbvral 2587 . 2  |-  ( A. x  e.  A  ph  <->  A. z  e.  A  [ z  /  x ] ph )
5 nfv 1467 . . . 4  |-  F/ y
ph
65nfsb 1871 . . 3  |-  F/ y [ z  /  x ] ph
7 nfv 1467 . . 3  |-  F/ z [ y  /  x ] ph
8 sbequ 1769 . . 3  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
96, 7, 8cbvral 2587 . 2  |-  ( A. z  e.  A  [
z  /  x ] ph 
<-> 
A. y  e.  A  [ y  /  x ] ph )
104, 9bitri 183 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1693   A.wral 2360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365
This theorem is referenced by:  sbralie  2604  rspsbc  2922  ralxpf  4595
  Copyright terms: Public domain W3C validator