ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralsv Unicode version

Theorem cbvralsv 2731
Description: Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
cbvralsv  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  [ y  /  x ] ph )
Distinct variable groups:    x, A    y, A    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem cbvralsv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1538 . . 3  |-  F/ z
ph
2 nfs1v 1949 . . 3  |-  F/ x [ z  /  x ] ph
3 sbequ12 1781 . . 3  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
41, 2, 3cbvral 2711 . 2  |-  ( A. x  e.  A  ph  <->  A. z  e.  A  [ z  /  x ] ph )
5 nfv 1538 . . . 4  |-  F/ y
ph
65nfsb 1956 . . 3  |-  F/ y [ z  /  x ] ph
7 nfv 1538 . . 3  |-  F/ z [ y  /  x ] ph
8 sbequ 1850 . . 3  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
96, 7, 8cbvral 2711 . 2  |-  ( A. z  e.  A  [
z  /  x ] ph 
<-> 
A. y  e.  A  [ y  /  x ] ph )
104, 9bitri 184 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1772   A.wral 2465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470
This theorem is referenced by:  sbralie  2733  rspsbc  3057  ralxpf  4785
  Copyright terms: Public domain W3C validator