Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clelsb4 | Unicode version |
Description: Substitution applied to an atomic wff (class version of elsb4 2136). (Contributed by Jim Kingdon, 22-Nov-2018.) |
Ref | Expression |
---|---|
clelsb4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . . 3 | |
2 | 1 | sbco2 1945 | . 2 |
3 | nfv 1508 | . . . 4 | |
4 | eleq2 2221 | . . . 4 | |
5 | 3, 4 | sbie 1771 | . . 3 |
6 | 5 | sbbii 1745 | . 2 |
7 | nfv 1508 | . . 3 | |
8 | eleq2 2221 | . . 3 | |
9 | 7, 8 | sbie 1771 | . 2 |
10 | 2, 6, 9 | 3bitr3i 209 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wsb 1742 wcel 2128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-cleq 2150 df-clel 2153 |
This theorem is referenced by: peano1 4551 peano2 4552 |
Copyright terms: Public domain | W3C validator |