ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb4 Unicode version

Theorem clelsb4 2263
Description: Substitution applied to an atomic wff (class version of elsb4 2136). (Contributed by Jim Kingdon, 22-Nov-2018.)
Assertion
Ref Expression
clelsb4  |-  ( [ y  /  x ] A  e.  x  <->  A  e.  y )
Distinct variable group:    x, A
Allowed substitution hint:    A( y)

Proof of Theorem clelsb4
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . 3  |-  F/ x  A  e.  w
21sbco2 1945 . 2  |-  ( [ y  /  x ] [ x  /  w ] A  e.  w  <->  [ y  /  w ] A  e.  w )
3 nfv 1508 . . . 4  |-  F/ w  A  e.  x
4 eleq2 2221 . . . 4  |-  ( w  =  x  ->  ( A  e.  w  <->  A  e.  x ) )
53, 4sbie 1771 . . 3  |-  ( [ x  /  w ] A  e.  w  <->  A  e.  x )
65sbbii 1745 . 2  |-  ( [ y  /  x ] [ x  /  w ] A  e.  w  <->  [ y  /  x ] A  e.  x )
7 nfv 1508 . . 3  |-  F/ w  A  e.  y
8 eleq2 2221 . . 3  |-  ( w  =  y  ->  ( A  e.  w  <->  A  e.  y ) )
97, 8sbie 1771 . 2  |-  ( [ y  /  w ] A  e.  w  <->  A  e.  y )
102, 6, 93bitr3i 209 1  |-  ( [ y  /  x ] A  e.  x  <->  A  e.  y )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1742    e. wcel 2128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-cleq 2150  df-clel 2153
This theorem is referenced by:  peano1  4551  peano2  4552
  Copyright terms: Public domain W3C validator