![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano1 | Unicode version |
Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
Ref | Expression |
---|---|
peano1 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4157 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | elint 3877 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-clab 2180 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | simpl 109 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | sbimi 1775 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | clelsb2 2299 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | sylib 122 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | sylbi 121 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 2, 8 | mpgbir 1464 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | dfom3 4625 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | eleqtrri 2269 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4156 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-nul 3448 df-int 3872 df-iom 4624 |
This theorem is referenced by: peano5 4631 limom 4647 nnregexmid 4654 omsinds 4655 nnpredcl 4656 frec0g 6452 frecabcl 6454 frecrdg 6463 oa1suc 6522 nna0r 6533 nnm0r 6534 nnmcl 6536 nnmsucr 6543 1onn 6575 nnm1 6580 nnaordex 6583 nnawordex 6584 php5 6916 php5dom 6921 0fin 6942 findcard2 6947 findcard2s 6948 infm 6962 inffiexmid 6964 0ct 7168 ctmlemr 7169 ctssdclemn0 7171 ctssdc 7174 omct 7178 nninfisol 7194 fodjum 7207 fodju0 7208 ctssexmid 7211 nninfwlpoimlemg 7236 nninfwlpoimlemginf 7237 1lt2pi 7402 nq0m0r 7518 nq0a0 7519 prarloclem5 7562 frec2uzrand 10479 frecuzrdg0 10487 frecuzrdg0t 10496 frecfzennn 10500 0tonninf 10514 1tonninf 10515 hashinfom 10852 hashunlem 10878 hash1 10885 nninfctlemfo 12180 ennnfonelemj0 12561 ennnfonelem1 12567 ennnfonelemhf1o 12573 ennnfonelemhom 12575 fnpr2o 12925 fvpr0o 12927 xpscf 12933 bj-nn0suc 15526 bj-nn0sucALT 15540 012of 15556 2o01f 15557 pwle2 15559 pwf1oexmid 15560 subctctexmid 15561 peano3nninf 15567 nninfall 15569 nninfsellemdc 15570 nninfsellemeq 15574 nninffeq 15580 isomninnlem 15590 iswomninnlem 15609 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |