| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano1 | Unicode version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| peano1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4172 |
. . . 4
| |
| 2 | 1 | elint 3891 |
. . 3
|
| 3 | df-clab 2192 |
. . . 4
| |
| 4 | simpl 109 |
. . . . . 6
| |
| 5 | 4 | sbimi 1787 |
. . . . 5
|
| 6 | clelsb2 2311 |
. . . . 5
| |
| 7 | 5, 6 | sylib 122 |
. . . 4
|
| 8 | 3, 7 | sylbi 121 |
. . 3
|
| 9 | 2, 8 | mpgbir 1476 |
. 2
|
| 10 | dfom3 4641 |
. 2
| |
| 11 | 9, 10 | eleqtrri 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-nul 4171 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-nul 3461 df-int 3886 df-iom 4640 |
| This theorem is referenced by: peano5 4647 limom 4663 nnregexmid 4670 omsinds 4671 nnpredcl 4672 frec0g 6485 frecabcl 6487 frecrdg 6496 oa1suc 6555 nna0r 6566 nnm0r 6567 nnmcl 6569 nnmsucr 6576 1onn 6608 nnm1 6613 nnaordex 6616 nnawordex 6617 php5 6957 php5dom 6962 0fin 6983 findcard2 6988 findcard2s 6989 infm 7003 inffiexmid 7005 0ct 7211 ctmlemr 7212 ctssdclemn0 7214 ctssdc 7217 omct 7221 nninfisol 7237 fodjum 7250 fodju0 7251 ctssexmid 7254 nninfwlpoimlemg 7279 nninfwlpoimlemginf 7280 1lt2pi 7455 nq0m0r 7571 nq0a0 7572 prarloclem5 7615 frec2uzrand 10552 frecuzrdg0 10560 frecuzrdg0t 10569 frecfzennn 10573 0tonninf 10587 1tonninf 10588 hashinfom 10925 hashunlem 10951 hash1 10958 nninfctlemfo 12394 ennnfonelemj0 12805 ennnfonelem1 12811 ennnfonelemhf1o 12817 ennnfonelemhom 12819 fnpr2o 13204 fvpr0o 13206 xpscf 13212 bj-nn0suc 15937 bj-nn0sucALT 15951 012of 15967 2o01f 15968 pwle2 15972 pwf1oexmid 15973 subctctexmid 15974 peano3nninf 15981 nninfall 15983 nninfsellemdc 15984 nninfsellemeq 15988 nninffeq 15994 nnnninfex 15996 isomninnlem 16006 iswomninnlem 16025 ismkvnnlem 16028 |
| Copyright terms: Public domain | W3C validator |