| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano1 | Unicode version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| peano1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4171 |
. . . 4
| |
| 2 | 1 | elint 3891 |
. . 3
|
| 3 | df-clab 2192 |
. . . 4
| |
| 4 | simpl 109 |
. . . . . 6
| |
| 5 | 4 | sbimi 1787 |
. . . . 5
|
| 6 | clelsb2 2311 |
. . . . 5
| |
| 7 | 5, 6 | sylib 122 |
. . . 4
|
| 8 | 3, 7 | sylbi 121 |
. . 3
|
| 9 | 2, 8 | mpgbir 1476 |
. 2
|
| 10 | dfom3 4640 |
. 2
| |
| 11 | 9, 10 | eleqtrri 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-nul 4170 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-nul 3461 df-int 3886 df-iom 4639 |
| This theorem is referenced by: peano5 4646 limom 4662 nnregexmid 4669 omsinds 4670 nnpredcl 4671 frec0g 6483 frecabcl 6485 frecrdg 6494 oa1suc 6553 nna0r 6564 nnm0r 6565 nnmcl 6567 nnmsucr 6574 1onn 6606 nnm1 6611 nnaordex 6614 nnawordex 6615 php5 6955 php5dom 6960 0fin 6981 findcard2 6986 findcard2s 6987 infm 7001 inffiexmid 7003 0ct 7209 ctmlemr 7210 ctssdclemn0 7212 ctssdc 7215 omct 7219 nninfisol 7235 fodjum 7248 fodju0 7249 ctssexmid 7252 nninfwlpoimlemg 7277 nninfwlpoimlemginf 7278 1lt2pi 7453 nq0m0r 7569 nq0a0 7570 prarloclem5 7613 frec2uzrand 10550 frecuzrdg0 10558 frecuzrdg0t 10567 frecfzennn 10571 0tonninf 10585 1tonninf 10586 hashinfom 10923 hashunlem 10949 hash1 10956 nninfctlemfo 12361 ennnfonelemj0 12772 ennnfonelem1 12778 ennnfonelemhf1o 12784 ennnfonelemhom 12786 fnpr2o 13171 fvpr0o 13173 xpscf 13179 bj-nn0suc 15904 bj-nn0sucALT 15918 012of 15934 2o01f 15935 pwle2 15939 pwf1oexmid 15940 subctctexmid 15941 peano3nninf 15948 nninfall 15950 nninfsellemdc 15951 nninfsellemeq 15955 nninffeq 15961 nnnninfex 15963 isomninnlem 15973 iswomninnlem 15992 ismkvnnlem 15995 |
| Copyright terms: Public domain | W3C validator |