ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano1 Unicode version

Theorem peano1 4578
Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.)
Assertion
Ref Expression
peano1  |-  (/)  e.  om

Proof of Theorem peano1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4116 . . . 4  |-  (/)  e.  _V
21elint 3837 . . 3  |-  ( (/)  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  <->  A. z
( z  e.  {
y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  (/)  e.  z ) )
3 df-clab 2157 . . . 4  |-  ( z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  <->  [ z  /  y ] (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) )
4 simpl 108 . . . . . 6  |-  ( (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )  ->  (/)  e.  y )
54sbimi 1757 . . . . 5  |-  ( [ z  /  y ] ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )  ->  [ z  /  y ] (/)  e.  y )
6 clelsb2 2276 . . . . 5  |-  ( [ z  /  y ]
(/)  e.  y  <->  (/)  e.  z )
75, 6sylib 121 . . . 4  |-  ( [ z  /  y ] ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y )  ->  (/)  e.  z )
83, 7sylbi 120 . . 3  |-  ( z  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  (/)  e.  z )
92, 8mpgbir 1446 . 2  |-  (/)  e.  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }
10 dfom3 4576 . 2  |-  om  =  |^| { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }
119, 10eleqtrri 2246 1  |-  (/)  e.  om
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   [wsb 1755    e. wcel 2141   {cab 2156   A.wral 2448   (/)c0 3414   |^|cint 3831   suc csuc 4350   omcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-nul 3415  df-int 3832  df-iom 4575
This theorem is referenced by:  peano5  4582  limom  4598  nnregexmid  4605  omsinds  4606  nnpredcl  4607  frec0g  6376  frecabcl  6378  frecrdg  6387  oa1suc  6446  nna0r  6457  nnm0r  6458  nnmcl  6460  nnmsucr  6467  1onn  6499  nnm1  6504  nnaordex  6507  nnawordex  6508  php5  6836  php5dom  6841  0fin  6862  findcard2  6867  findcard2s  6868  infm  6882  inffiexmid  6884  0ct  7084  ctmlemr  7085  ctssdclemn0  7087  ctssdc  7090  omct  7094  nninfisol  7109  fodjum  7122  fodju0  7123  ctssexmid  7126  nninfwlpoimlemg  7151  nninfwlpoimlemginf  7152  1lt2pi  7302  nq0m0r  7418  nq0a0  7419  prarloclem5  7462  frec2uzrand  10361  frecuzrdg0  10369  frecuzrdg0t  10378  frecfzennn  10382  0tonninf  10395  1tonninf  10396  hashinfom  10712  hashunlem  10739  hash1  10746  ennnfonelemj0  12356  ennnfonelem1  12362  ennnfonelemhf1o  12368  ennnfonelemhom  12370  bj-nn0suc  13999  bj-nn0sucALT  14013  012of  14028  2o01f  14029  pwle2  14031  pwf1oexmid  14032  subctctexmid  14034  peano3nninf  14040  nninfall  14042  nninfsellemdc  14043  nninfsellemeq  14047  nninffeq  14053  isomninnlem  14062  iswomninnlem  14081  ismkvnnlem  14084
  Copyright terms: Public domain W3C validator