| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano1 | Unicode version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| peano1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4187 |
. . . 4
| |
| 2 | 1 | elint 3905 |
. . 3
|
| 3 | df-clab 2194 |
. . . 4
| |
| 4 | simpl 109 |
. . . . . 6
| |
| 5 | 4 | sbimi 1788 |
. . . . 5
|
| 6 | clelsb2 2313 |
. . . . 5
| |
| 7 | 5, 6 | sylib 122 |
. . . 4
|
| 8 | 3, 7 | sylbi 121 |
. . 3
|
| 9 | 2, 8 | mpgbir 1477 |
. 2
|
| 10 | dfom3 4658 |
. 2
| |
| 11 | 9, 10 | eleqtrri 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-nul 4186 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-nul 3469 df-int 3900 df-iom 4657 |
| This theorem is referenced by: peano5 4664 limom 4680 nnregexmid 4687 omsinds 4688 nnpredcl 4689 frec0g 6506 frecabcl 6508 frecrdg 6517 oa1suc 6576 nna0r 6587 nnm0r 6588 nnmcl 6590 nnmsucr 6597 1onn 6629 nnm1 6634 nnaordex 6637 nnawordex 6638 php5 6980 php5dom 6985 0fin 7007 findcard2 7012 findcard2s 7013 infm 7027 inffiexmid 7029 0ct 7235 ctmlemr 7236 ctssdclemn0 7238 ctssdc 7241 omct 7245 nninfisol 7261 fodjum 7274 fodju0 7275 ctssexmid 7278 nninfwlpoimlemg 7303 nninfwlpoimlemginf 7304 1lt2pi 7488 nq0m0r 7604 nq0a0 7605 prarloclem5 7648 frec2uzrand 10587 frecuzrdg0 10595 frecuzrdg0t 10604 frecfzennn 10608 0tonninf 10622 1tonninf 10623 hashinfom 10960 hashunlem 10986 hash1 10993 nninfctlemfo 12476 ennnfonelemj0 12887 ennnfonelem1 12893 ennnfonelemhf1o 12899 ennnfonelemhom 12901 fnpr2o 13286 fvpr0o 13288 xpscf 13294 bj-nn0suc 16099 bj-nn0sucALT 16113 012of 16130 2o01f 16131 pwle2 16137 pwf1oexmid 16138 subctctexmid 16139 peano3nninf 16146 nninfall 16148 nninfsellemdc 16149 nninfsellemeq 16153 nninffeq 16159 nnnninfex 16161 isomninnlem 16171 iswomninnlem 16190 ismkvnnlem 16193 |
| Copyright terms: Public domain | W3C validator |