| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano1 | Unicode version | ||
| Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
| Ref | Expression |
|---|---|
| peano1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4211 |
. . . 4
| |
| 2 | 1 | elint 3929 |
. . 3
|
| 3 | df-clab 2216 |
. . . 4
| |
| 4 | simpl 109 |
. . . . . 6
| |
| 5 | 4 | sbimi 1810 |
. . . . 5
|
| 6 | clelsb2 2335 |
. . . . 5
| |
| 7 | 5, 6 | sylib 122 |
. . . 4
|
| 8 | 3, 7 | sylbi 121 |
. . 3
|
| 9 | 2, 8 | mpgbir 1499 |
. 2
|
| 10 | dfom3 4684 |
. 2
| |
| 11 | 9, 10 | eleqtrri 2305 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4210 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-nul 3492 df-int 3924 df-iom 4683 |
| This theorem is referenced by: peano5 4690 limom 4706 nnregexmid 4713 omsinds 4714 nnpredcl 4715 frec0g 6543 frecabcl 6545 frecrdg 6554 oa1suc 6613 nna0r 6624 nnm0r 6625 nnmcl 6627 nnmsucr 6634 1onn 6666 nnm1 6671 nnaordex 6674 nnawordex 6675 php5 7019 php5dom 7024 0fin 7046 findcard2 7051 findcard2s 7052 infm 7066 inffiexmid 7068 0ct 7274 ctmlemr 7275 ctssdclemn0 7277 ctssdc 7280 omct 7284 nninfisol 7300 fodjum 7313 fodju0 7314 ctssexmid 7317 nninfwlpoimlemg 7342 nninfwlpoimlemginf 7343 1lt2pi 7527 nq0m0r 7643 nq0a0 7644 prarloclem5 7687 frec2uzrand 10627 frecuzrdg0 10635 frecuzrdg0t 10644 frecfzennn 10648 0tonninf 10662 1tonninf 10663 hashinfom 11000 hashunlem 11026 hash1 11033 nninfctlemfo 12561 ennnfonelemj0 12972 ennnfonelem1 12978 ennnfonelemhf1o 12984 ennnfonelemhom 12986 fnpr2o 13372 fvpr0o 13374 xpscf 13380 bj-nn0suc 16327 bj-nn0sucALT 16341 012of 16357 2o01f 16358 pwle2 16364 pwf1oexmid 16365 subctctexmid 16366 peano3nninf 16373 nninfall 16375 nninfsellemdc 16376 nninfsellemeq 16380 nninffeq 16386 nnnninfex 16388 isomninnlem 16398 iswomninnlem 16417 ismkvnnlem 16420 |
| Copyright terms: Public domain | W3C validator |