Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano1 | Unicode version |
Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
Ref | Expression |
---|---|
peano1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4125 | . . . 4 | |
2 | 1 | elint 3846 | . . 3 |
3 | df-clab 2162 | . . . 4 | |
4 | simpl 109 | . . . . . 6 | |
5 | 4 | sbimi 1762 | . . . . 5 |
6 | clelsb2 2281 | . . . . 5 | |
7 | 5, 6 | sylib 122 | . . . 4 |
8 | 3, 7 | sylbi 121 | . . 3 |
9 | 2, 8 | mpgbir 1451 | . 2 |
10 | dfom3 4585 | . 2 | |
11 | 9, 10 | eleqtrri 2251 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wsb 1760 wcel 2146 cab 2161 wral 2453 c0 3420 cint 3840 csuc 4359 com 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-nul 4124 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-nul 3421 df-int 3841 df-iom 4584 |
This theorem is referenced by: peano5 4591 limom 4607 nnregexmid 4614 omsinds 4615 nnpredcl 4616 frec0g 6388 frecabcl 6390 frecrdg 6399 oa1suc 6458 nna0r 6469 nnm0r 6470 nnmcl 6472 nnmsucr 6479 1onn 6511 nnm1 6516 nnaordex 6519 nnawordex 6520 php5 6848 php5dom 6853 0fin 6874 findcard2 6879 findcard2s 6880 infm 6894 inffiexmid 6896 0ct 7096 ctmlemr 7097 ctssdclemn0 7099 ctssdc 7102 omct 7106 nninfisol 7121 fodjum 7134 fodju0 7135 ctssexmid 7138 nninfwlpoimlemg 7163 nninfwlpoimlemginf 7164 1lt2pi 7314 nq0m0r 7430 nq0a0 7431 prarloclem5 7474 frec2uzrand 10375 frecuzrdg0 10383 frecuzrdg0t 10392 frecfzennn 10396 0tonninf 10409 1tonninf 10410 hashinfom 10726 hashunlem 10752 hash1 10759 ennnfonelemj0 12369 ennnfonelem1 12375 ennnfonelemhf1o 12381 ennnfonelemhom 12383 bj-nn0suc 14285 bj-nn0sucALT 14299 012of 14314 2o01f 14315 pwle2 14317 pwf1oexmid 14318 subctctexmid 14320 peano3nninf 14326 nninfall 14328 nninfsellemdc 14329 nninfsellemeq 14333 nninffeq 14339 isomninnlem 14348 iswomninnlem 14367 ismkvnnlem 14370 |
Copyright terms: Public domain | W3C validator |