![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano1 | Unicode version |
Description: Zero is a natural number. One of Peano's five postulates for arithmetic. Proposition 7.30(1) of [TakeutiZaring] p. 42. (Contributed by NM, 15-May-1994.) |
Ref | Expression |
---|---|
peano1 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4156 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | elint 3876 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-clab 2180 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | simpl 109 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | sbimi 1775 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | clelsb2 2299 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | sylib 122 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | sylbi 121 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 2, 8 | mpgbir 1464 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | dfom3 4624 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | eleqtrri 2269 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4155 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-nul 3447 df-int 3871 df-iom 4623 |
This theorem is referenced by: peano5 4630 limom 4646 nnregexmid 4653 omsinds 4654 nnpredcl 4655 frec0g 6450 frecabcl 6452 frecrdg 6461 oa1suc 6520 nna0r 6531 nnm0r 6532 nnmcl 6534 nnmsucr 6541 1onn 6573 nnm1 6578 nnaordex 6581 nnawordex 6582 php5 6914 php5dom 6919 0fin 6940 findcard2 6945 findcard2s 6946 infm 6960 inffiexmid 6962 0ct 7166 ctmlemr 7167 ctssdclemn0 7169 ctssdc 7172 omct 7176 nninfisol 7192 fodjum 7205 fodju0 7206 ctssexmid 7209 nninfwlpoimlemg 7234 nninfwlpoimlemginf 7235 1lt2pi 7400 nq0m0r 7516 nq0a0 7517 prarloclem5 7560 frec2uzrand 10476 frecuzrdg0 10484 frecuzrdg0t 10493 frecfzennn 10497 0tonninf 10511 1tonninf 10512 hashinfom 10849 hashunlem 10875 hash1 10882 nninfctlemfo 12177 ennnfonelemj0 12558 ennnfonelem1 12564 ennnfonelemhf1o 12570 ennnfonelemhom 12572 fnpr2o 12922 fvpr0o 12924 xpscf 12930 bj-nn0suc 15456 bj-nn0sucALT 15470 012of 15486 2o01f 15487 pwle2 15489 pwf1oexmid 15490 subctctexmid 15491 peano3nninf 15497 nninfall 15499 nninfsellemdc 15500 nninfsellemeq 15504 nninffeq 15510 isomninnlem 15520 iswomninnlem 15539 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |