ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clelsb4 GIF version

Theorem clelsb4 2194
Description: Substitution applied to an atomic wff (class version of elsb4 1902). (Contributed by Jim Kingdon, 22-Nov-2018.)
Assertion
Ref Expression
clelsb4 ([𝑥 / 𝑦]𝐴𝑦𝐴𝑥)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem clelsb4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1467 . . 3 𝑦 𝐴𝑤
21sbco2 1888 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝐴𝑤 ↔ [𝑥 / 𝑤]𝐴𝑤)
3 nfv 1467 . . . 4 𝑤 𝐴𝑦
4 eleq2 2152 . . . 4 (𝑤 = 𝑦 → (𝐴𝑤𝐴𝑦))
53, 4sbie 1722 . . 3 ([𝑦 / 𝑤]𝐴𝑤𝐴𝑦)
65sbbii 1696 . 2 ([𝑥 / 𝑦][𝑦 / 𝑤]𝐴𝑤 ↔ [𝑥 / 𝑦]𝐴𝑦)
7 nfv 1467 . . 3 𝑤 𝐴𝑥
8 eleq2 2152 . . 3 (𝑤 = 𝑥 → (𝐴𝑤𝐴𝑥))
97, 8sbie 1722 . 2 ([𝑥 / 𝑤]𝐴𝑤𝐴𝑥)
102, 6, 93bitr3i 209 1 ([𝑥 / 𝑦]𝐴𝑦𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1439  [wsb 1693
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-cleq 2082  df-clel 2085
This theorem is referenced by:  peano1  4424  peano2  4425
  Copyright terms: Public domain W3C validator