![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clelsb4 | GIF version |
Description: Substitution applied to an atomic wff (class version of elsb4 1902). (Contributed by Jim Kingdon, 22-Nov-2018.) |
Ref | Expression |
---|---|
clelsb4 | ⊢ ([𝑥 / 𝑦]𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1467 | . . 3 ⊢ Ⅎ𝑦 𝐴 ∈ 𝑤 | |
2 | 1 | sbco2 1888 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑥 / 𝑤]𝐴 ∈ 𝑤) |
3 | nfv 1467 | . . . 4 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑦 | |
4 | eleq2 2152 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦)) | |
5 | 3, 4 | sbie 1722 | . . 3 ⊢ ([𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦) |
6 | 5 | sbbii 1696 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑥 / 𝑦]𝐴 ∈ 𝑦) |
7 | nfv 1467 | . . 3 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑥 | |
8 | eleq2 2152 | . . 3 ⊢ (𝑤 = 𝑥 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥)) | |
9 | 7, 8 | sbie 1722 | . 2 ⊢ ([𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥) |
10 | 2, 6, 9 | 3bitr3i 209 | 1 ⊢ ([𝑥 / 𝑦]𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 1439 [wsb 1693 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 df-cleq 2082 df-clel 2085 |
This theorem is referenced by: peano1 4424 peano2 4425 |
Copyright terms: Public domain | W3C validator |