![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clelsb3 | Unicode version |
Description: Substitution applied to an atomic wff (class version of elsb3 1900). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
clelsb3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1466 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | sbco2 1887 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | nfv 1466 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | eleq1 2150 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | sbie 1721 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | sbbii 1695 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | nfv 1466 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
8 | eleq1 2150 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | sbie 1721 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 2, 6, 9 | 3bitr3i 208 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-cleq 2081 df-clel 2084 |
This theorem is referenced by: hblem 2195 nfraldya 2412 nfrexdya 2413 cbvreu 2588 sbcel1v 2901 rmo3 2930 setindel 4354 elirr 4357 en2lp 4370 zfregfr 4389 tfi 4397 bdcriota 11774 |
Copyright terms: Public domain | W3C validator |