ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq12d Unicode version

Theorem coeq12d 4803
Description: Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.)
Hypotheses
Ref Expression
coeq12d.1  |-  ( ph  ->  A  =  B )
coeq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
coeq12d  |-  ( ph  ->  ( A  o.  C
)  =  ( B  o.  D ) )

Proof of Theorem coeq12d
StepHypRef Expression
1 coeq12d.1 . . 3  |-  ( ph  ->  A  =  B )
21coeq1d 4800 . 2  |-  ( ph  ->  ( A  o.  C
)  =  ( B  o.  C ) )
3 coeq12d.2 . . 3  |-  ( ph  ->  C  =  D )
43coeq2d 4801 . 2  |-  ( ph  ->  ( B  o.  C
)  =  ( B  o.  D ) )
52, 4eqtrd 2220 1  |-  ( ph  ->  ( A  o.  C
)  =  ( B  o.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    o. ccom 4642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-in 3147  df-ss 3154  df-br 4016  df-opab 4077  df-co 4647
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator