ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co Unicode version

Definition df-co 4669
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses a slash instead of  o., and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Distinct variable groups:    x, y, z, A    x, B, y, z

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2ccom 4664 . 2  class  ( A  o.  B )
4 vx . . . . . . 7  setvar  x
54cv 1363 . . . . . 6  class  x
6 vz . . . . . . 7  setvar  z
76cv 1363 . . . . . 6  class  z
85, 7, 2wbr 4030 . . . . 5  wff  x B z
9 vy . . . . . . 7  setvar  y
109cv 1363 . . . . . 6  class  y
117, 10, 1wbr 4030 . . . . 5  wff  z A y
128, 11wa 104 . . . 4  wff  ( x B z  /\  z A y )
1312, 6wex 1503 . . 3  wff  E. z
( x B z  /\  z A y )
1413, 4, 9copab 4090 . 2  class  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
153, 14wceq 1364 1  wff  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Colors of variables: wff set class
This definition is referenced by:  coss1  4818  coss2  4819  nfco  4828  elco  4829  brcog  4830  cnvco  4848  cotr  5048  relco  5165  coundi  5168  coundir  5169  cores  5170  xpcom  5213  dffun2  5265  funco  5295  xpcomco  6882
  Copyright terms: Public domain W3C validator