ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co Unicode version

Definition df-co 4684
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses a slash instead of  o., and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Distinct variable groups:    x, y, z, A    x, B, y, z

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2ccom 4679 . 2  class  ( A  o.  B )
4 vx . . . . . . 7  setvar  x
54cv 1372 . . . . . 6  class  x
6 vz . . . . . . 7  setvar  z
76cv 1372 . . . . . 6  class  z
85, 7, 2wbr 4044 . . . . 5  wff  x B z
9 vy . . . . . . 7  setvar  y
109cv 1372 . . . . . 6  class  y
117, 10, 1wbr 4044 . . . . 5  wff  z A y
128, 11wa 104 . . . 4  wff  ( x B z  /\  z A y )
1312, 6wex 1515 . . 3  wff  E. z
( x B z  /\  z A y )
1413, 4, 9copab 4104 . 2  class  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
153, 14wceq 1373 1  wff  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Colors of variables: wff set class
This definition is referenced by:  coss1  4833  coss2  4834  nfco  4843  elco  4844  brcog  4845  cnvco  4863  cotr  5064  relco  5181  coundi  5184  coundir  5185  cores  5186  xpcom  5229  dffun2  5281  funco  5311  xpcomco  6921
  Copyright terms: Public domain W3C validator