ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co Unicode version

Definition df-co 4588
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses a slash instead of  o., and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Distinct variable groups:    x, y, z, A    x, B, y, z

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2ccom 4583 . 2  class  ( A  o.  B )
4 vx . . . . . . 7  setvar  x
54cv 1331 . . . . . 6  class  x
6 vz . . . . . . 7  setvar  z
76cv 1331 . . . . . 6  class  z
85, 7, 2wbr 3961 . . . . 5  wff  x B z
9 vy . . . . . . 7  setvar  y
109cv 1331 . . . . . 6  class  y
117, 10, 1wbr 3961 . . . . 5  wff  z A y
128, 11wa 103 . . . 4  wff  ( x B z  /\  z A y )
1312, 6wex 1469 . . 3  wff  E. z
( x B z  /\  z A y )
1413, 4, 9copab 4020 . 2  class  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
153, 14wceq 1332 1  wff  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Colors of variables: wff set class
This definition is referenced by:  coss1  4734  coss2  4735  nfco  4744  elco  4745  brcog  4746  cnvco  4764  cotr  4960  relco  5077  coundi  5080  coundir  5081  cores  5082  xpcom  5125  dffun2  5173  funco  5203  xpcomco  6760
  Copyright terms: Public domain W3C validator