ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co Unicode version

Definition df-co 4672
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses a slash instead of  o., and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Distinct variable groups:    x, y, z, A    x, B, y, z

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2ccom 4667 . 2  class  ( A  o.  B )
4 vx . . . . . . 7  setvar  x
54cv 1363 . . . . . 6  class  x
6 vz . . . . . . 7  setvar  z
76cv 1363 . . . . . 6  class  z
85, 7, 2wbr 4033 . . . . 5  wff  x B z
9 vy . . . . . . 7  setvar  y
109cv 1363 . . . . . 6  class  y
117, 10, 1wbr 4033 . . . . 5  wff  z A y
128, 11wa 104 . . . 4  wff  ( x B z  /\  z A y )
1312, 6wex 1506 . . 3  wff  E. z
( x B z  /\  z A y )
1413, 4, 9copab 4093 . 2  class  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
153, 14wceq 1364 1  wff  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Colors of variables: wff set class
This definition is referenced by:  coss1  4821  coss2  4822  nfco  4831  elco  4832  brcog  4833  cnvco  4851  cotr  5051  relco  5168  coundi  5171  coundir  5172  cores  5173  xpcom  5216  dffun2  5268  funco  5298  xpcomco  6885
  Copyright terms: Public domain W3C validator