ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co Unicode version

Definition df-co 4637
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses a slash instead of  o., and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Distinct variable groups:    x, y, z, A    x, B, y, z

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2ccom 4632 . 2  class  ( A  o.  B )
4 vx . . . . . . 7  setvar  x
54cv 1352 . . . . . 6  class  x
6 vz . . . . . . 7  setvar  z
76cv 1352 . . . . . 6  class  z
85, 7, 2wbr 4005 . . . . 5  wff  x B z
9 vy . . . . . . 7  setvar  y
109cv 1352 . . . . . 6  class  y
117, 10, 1wbr 4005 . . . . 5  wff  z A y
128, 11wa 104 . . . 4  wff  ( x B z  /\  z A y )
1312, 6wex 1492 . . 3  wff  E. z
( x B z  /\  z A y )
1413, 4, 9copab 4065 . 2  class  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
153, 14wceq 1353 1  wff  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Colors of variables: wff set class
This definition is referenced by:  coss1  4784  coss2  4785  nfco  4794  elco  4795  brcog  4796  cnvco  4814  cotr  5012  relco  5129  coundi  5132  coundir  5133  cores  5134  xpcom  5177  dffun2  5228  funco  5258  xpcomco  6828
  Copyright terms: Public domain W3C validator