ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co Unicode version

Definition df-co 4702
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses a slash instead of  o., and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Distinct variable groups:    x, y, z, A    x, B, y, z

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2ccom 4697 . 2  class  ( A  o.  B )
4 vx . . . . . . 7  setvar  x
54cv 1372 . . . . . 6  class  x
6 vz . . . . . . 7  setvar  z
76cv 1372 . . . . . 6  class  z
85, 7, 2wbr 4059 . . . . 5  wff  x B z
9 vy . . . . . . 7  setvar  y
109cv 1372 . . . . . 6  class  y
117, 10, 1wbr 4059 . . . . 5  wff  z A y
128, 11wa 104 . . . 4  wff  ( x B z  /\  z A y )
1312, 6wex 1516 . . 3  wff  E. z
( x B z  /\  z A y )
1413, 4, 9copab 4120 . 2  class  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
153, 14wceq 1373 1  wff  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Colors of variables: wff set class
This definition is referenced by:  coss1  4851  coss2  4852  nfco  4861  elco  4862  brcog  4863  cnvco  4881  cotr  5083  relco  5200  coundi  5203  coundir  5204  cores  5205  xpcom  5248  dffun2  5300  funco  5330  xpcomco  6946
  Copyright terms: Public domain W3C validator