ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co Unicode version

Definition df-co 4673
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses a slash instead of  o., and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Distinct variable groups:    x, y, z, A    x, B, y, z

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2ccom 4668 . 2  class  ( A  o.  B )
4 vx . . . . . . 7  setvar  x
54cv 1363 . . . . . 6  class  x
6 vz . . . . . . 7  setvar  z
76cv 1363 . . . . . 6  class  z
85, 7, 2wbr 4034 . . . . 5  wff  x B z
9 vy . . . . . . 7  setvar  y
109cv 1363 . . . . . 6  class  y
117, 10, 1wbr 4034 . . . . 5  wff  z A y
128, 11wa 104 . . . 4  wff  ( x B z  /\  z A y )
1312, 6wex 1506 . . 3  wff  E. z
( x B z  /\  z A y )
1413, 4, 9copab 4094 . 2  class  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
153, 14wceq 1364 1  wff  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Colors of variables: wff set class
This definition is referenced by:  coss1  4822  coss2  4823  nfco  4832  elco  4833  brcog  4834  cnvco  4852  cotr  5052  relco  5169  coundi  5172  coundir  5173  cores  5174  xpcom  5217  dffun2  5269  funco  5299  xpcomco  6894
  Copyright terms: Public domain W3C validator