ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co Unicode version

Definition df-co 4612
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses a slash instead of  o., and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Distinct variable groups:    x, y, z, A    x, B, y, z

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2ccom 4607 . 2  class  ( A  o.  B )
4 vx . . . . . . 7  setvar  x
54cv 1342 . . . . . 6  class  x
6 vz . . . . . . 7  setvar  z
76cv 1342 . . . . . 6  class  z
85, 7, 2wbr 3981 . . . . 5  wff  x B z
9 vy . . . . . . 7  setvar  y
109cv 1342 . . . . . 6  class  y
117, 10, 1wbr 3981 . . . . 5  wff  z A y
128, 11wa 103 . . . 4  wff  ( x B z  /\  z A y )
1312, 6wex 1480 . . 3  wff  E. z
( x B z  /\  z A y )
1413, 4, 9copab 4041 . 2  class  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
153, 14wceq 1343 1  wff  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Colors of variables: wff set class
This definition is referenced by:  coss1  4758  coss2  4759  nfco  4768  elco  4769  brcog  4770  cnvco  4788  cotr  4984  relco  5101  coundi  5104  coundir  5105  cores  5106  xpcom  5149  dffun2  5197  funco  5227  xpcomco  6788
  Copyright terms: Public domain W3C validator