ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co Unicode version

Definition df-co 4728
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses a slash instead of  o., and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Distinct variable groups:    x, y, z, A    x, B, y, z

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2ccom 4723 . 2  class  ( A  o.  B )
4 vx . . . . . . 7  setvar  x
54cv 1394 . . . . . 6  class  x
6 vz . . . . . . 7  setvar  z
76cv 1394 . . . . . 6  class  z
85, 7, 2wbr 4083 . . . . 5  wff  x B z
9 vy . . . . . . 7  setvar  y
109cv 1394 . . . . . 6  class  y
117, 10, 1wbr 4083 . . . . 5  wff  z A y
128, 11wa 104 . . . 4  wff  ( x B z  /\  z A y )
1312, 6wex 1538 . . 3  wff  E. z
( x B z  /\  z A y )
1413, 4, 9copab 4144 . 2  class  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
153, 14wceq 1395 1  wff  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Colors of variables: wff set class
This definition is referenced by:  coss1  4877  coss2  4878  nfco  4887  elco  4888  brcog  4889  cnvco  4907  cotr  5110  relco  5227  coundi  5230  coundir  5231  cores  5232  xpcom  5275  dffun2  5328  funco  5358  xpcomco  6985
  Copyright terms: Public domain W3C validator