ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co Unicode version

Definition df-co 4685
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses a slash instead of  o., and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Distinct variable groups:    x, y, z, A    x, B, y, z

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2ccom 4680 . 2  class  ( A  o.  B )
4 vx . . . . . . 7  setvar  x
54cv 1372 . . . . . 6  class  x
6 vz . . . . . . 7  setvar  z
76cv 1372 . . . . . 6  class  z
85, 7, 2wbr 4045 . . . . 5  wff  x B z
9 vy . . . . . . 7  setvar  y
109cv 1372 . . . . . 6  class  y
117, 10, 1wbr 4045 . . . . 5  wff  z A y
128, 11wa 104 . . . 4  wff  ( x B z  /\  z A y )
1312, 6wex 1515 . . 3  wff  E. z
( x B z  /\  z A y )
1413, 4, 9copab 4105 . 2  class  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
153, 14wceq 1373 1  wff  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Colors of variables: wff set class
This definition is referenced by:  coss1  4834  coss2  4835  nfco  4844  elco  4845  brcog  4846  cnvco  4864  cotr  5065  relco  5182  coundi  5185  coundir  5186  cores  5187  xpcom  5230  dffun2  5282  funco  5312  xpcomco  6923
  Copyright terms: Public domain W3C validator