ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfco Unicode version

Theorem nfco 4861
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
Hypotheses
Ref Expression
nfco.1  |-  F/_ x A
nfco.2  |-  F/_ x B
Assertion
Ref Expression
nfco  |-  F/_ x
( A  o.  B
)

Proof of Theorem nfco
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 4702 . 2  |-  ( A  o.  B )  =  { <. y ,  z
>.  |  E. w
( y B w  /\  w A z ) }
2 nfcv 2350 . . . . . 6  |-  F/_ x
y
3 nfco.2 . . . . . 6  |-  F/_ x B
4 nfcv 2350 . . . . . 6  |-  F/_ x w
52, 3, 4nfbr 4106 . . . . 5  |-  F/ x  y B w
6 nfco.1 . . . . . 6  |-  F/_ x A
7 nfcv 2350 . . . . . 6  |-  F/_ x
z
84, 6, 7nfbr 4106 . . . . 5  |-  F/ x  w A z
95, 8nfan 1589 . . . 4  |-  F/ x
( y B w  /\  w A z )
109nfex 1661 . . 3  |-  F/ x E. w ( y B w  /\  w A z )
1110nfopab 4128 . 2  |-  F/_ x { <. y ,  z
>.  |  E. w
( y B w  /\  w A z ) }
121, 11nfcxfr 2347 1  |-  F/_ x
( A  o.  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1516   F/_wnfc 2337   class class class wbr 4059   {copab 4120    o. ccom 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-co 4702
This theorem is referenced by:  nffun  5313  nftpos  6388  cnmpt11  14870  cnmpt21  14878
  Copyright terms: Public domain W3C validator