ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfco Unicode version

Theorem nfco 4769
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
Hypotheses
Ref Expression
nfco.1  |-  F/_ x A
nfco.2  |-  F/_ x B
Assertion
Ref Expression
nfco  |-  F/_ x
( A  o.  B
)

Proof of Theorem nfco
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 4613 . 2  |-  ( A  o.  B )  =  { <. y ,  z
>.  |  E. w
( y B w  /\  w A z ) }
2 nfcv 2308 . . . . . 6  |-  F/_ x
y
3 nfco.2 . . . . . 6  |-  F/_ x B
4 nfcv 2308 . . . . . 6  |-  F/_ x w
52, 3, 4nfbr 4028 . . . . 5  |-  F/ x  y B w
6 nfco.1 . . . . . 6  |-  F/_ x A
7 nfcv 2308 . . . . . 6  |-  F/_ x
z
84, 6, 7nfbr 4028 . . . . 5  |-  F/ x  w A z
95, 8nfan 1553 . . . 4  |-  F/ x
( y B w  /\  w A z )
109nfex 1625 . . 3  |-  F/ x E. w ( y B w  /\  w A z )
1110nfopab 4050 . 2  |-  F/_ x { <. y ,  z
>.  |  E. w
( y B w  /\  w A z ) }
121, 11nfcxfr 2305 1  |-  F/_ x
( A  o.  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1480   F/_wnfc 2295   class class class wbr 3982   {copab 4042    o. ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-co 4613
This theorem is referenced by:  nffun  5211  nftpos  6247  cnmpt11  12923  cnmpt21  12931
  Copyright terms: Public domain W3C validator