![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfco | Unicode version |
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
nfco.1 |
![]() ![]() ![]() ![]() |
nfco.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfco |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-co 4447 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfcv 2228 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | nfco.2 |
. . . . . 6
![]() ![]() ![]() ![]() | |
4 | nfcv 2228 |
. . . . . 6
![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | nfbr 3889 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
6 | nfco.1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
7 | nfcv 2228 |
. . . . . 6
![]() ![]() ![]() ![]() | |
8 | 4, 6, 7 | nfbr 3889 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
9 | 5, 8 | nfan 1502 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | nfex 1573 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | nfopab 3906 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 1, 11 | nfcxfr 2225 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-co 4447 |
This theorem is referenced by: nffun 5038 nftpos 6044 |
Copyright terms: Public domain | W3C validator |