ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfco Unicode version

Theorem nfco 4887
Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
Hypotheses
Ref Expression
nfco.1  |-  F/_ x A
nfco.2  |-  F/_ x B
Assertion
Ref Expression
nfco  |-  F/_ x
( A  o.  B
)

Proof of Theorem nfco
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-co 4728 . 2  |-  ( A  o.  B )  =  { <. y ,  z
>.  |  E. w
( y B w  /\  w A z ) }
2 nfcv 2372 . . . . . 6  |-  F/_ x
y
3 nfco.2 . . . . . 6  |-  F/_ x B
4 nfcv 2372 . . . . . 6  |-  F/_ x w
52, 3, 4nfbr 4130 . . . . 5  |-  F/ x  y B w
6 nfco.1 . . . . . 6  |-  F/_ x A
7 nfcv 2372 . . . . . 6  |-  F/_ x
z
84, 6, 7nfbr 4130 . . . . 5  |-  F/ x  w A z
95, 8nfan 1611 . . . 4  |-  F/ x
( y B w  /\  w A z )
109nfex 1683 . . 3  |-  F/ x E. w ( y B w  /\  w A z )
1110nfopab 4152 . 2  |-  F/_ x { <. y ,  z
>.  |  E. w
( y B w  /\  w A z ) }
121, 11nfcxfr 2369 1  |-  F/_ x
( A  o.  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1538   F/_wnfc 2359   class class class wbr 4083   {copab 4144    o. ccom 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-co 4728
This theorem is referenced by:  nffun  5341  nftpos  6425  cnmpt11  14957  cnmpt21  14965
  Copyright terms: Public domain W3C validator