ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znval Unicode version

Theorem znval 14124
Description: The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s  |-  S  =  (RSpan ` ring )
znval.u  |-  U  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) )
znval.y  |-  Y  =  (ℤ/n `  N )
znval.f  |-  F  =  ( ( ZRHom `  U )  |`  W )
znval.w  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
znval.l  |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )
Assertion
Ref Expression
znval  |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <. ( le `  ndx ) , 
.<_  >. ) )

Proof of Theorem znval
Dummy variables  f  n  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znval.y . 2  |-  Y  =  (ℤ/n `  N )
2 df-zn 14104 . . 3  |- ℤ/n =  ( n  e. 
NN0  |->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
) )
3 zringring 14081 . . . . 5  |-ring  e.  Ring
43a1i 9 . . . 4  |-  ( n  =  N  ->ring  e.  Ring )
5 vex 2763 . . . . . . 7  |-  z  e. 
_V
6 rspex 13970 . . . . . . . . . 10  |-  ( z  e.  _V  ->  (RSpan `  z )  e.  _V )
76elv 2764 . . . . . . . . 9  |-  (RSpan `  z )  e.  _V
8 vex 2763 . . . . . . . . . 10  |-  n  e. 
_V
98snex 4214 . . . . . . . . 9  |-  { n }  e.  _V
107, 9fvex 5574 . . . . . . . 8  |-  ( (RSpan `  z ) `  {
n } )  e. 
_V
11 eqgex 13291 . . . . . . . 8  |-  ( ( z  e.  _V  /\  ( (RSpan `  z ) `  { n } )  e.  _V )  -> 
( z ~QG  ( (RSpan `  z
) `  { n } ) )  e. 
_V )
125, 10, 11mp2an 426 . . . . . . 7  |-  ( z ~QG  ( (RSpan `  z ) `  { n } ) )  e.  _V
13 qusex 12908 . . . . . . 7  |-  ( ( z  e.  _V  /\  ( z ~QG  ( (RSpan `  z
) `  { n } ) )  e. 
_V )  ->  (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  e.  _V )
145, 12, 13mp2an 426 . . . . . 6  |-  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  e.  _V
1514a1i 9 . . . . 5  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  e.  _V )
16 id 19 . . . . . . 7  |-  ( s  =  ( z  /.s  (
z ~QG 
( (RSpan `  z
) `  { n } ) ) )  ->  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )
17 simpr 110 . . . . . . . . 9  |-  ( ( n  =  N  /\  z  =ring )  ->  z  =ring )
1817fveq2d 5558 . . . . . . . . . . . 12  |-  ( ( n  =  N  /\  z  =ring )  ->  (RSpan `  z )  =  (RSpan ` ring ) )
19 znval.s . . . . . . . . . . . 12  |-  S  =  (RSpan ` ring )
2018, 19eqtr4di 2244 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  z  =ring )  ->  (RSpan `  z )  =  S )
21 simpl 109 . . . . . . . . . . . 12  |-  ( ( n  =  N  /\  z  =ring )  ->  n  =  N )
2221sneqd 3631 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  z  =ring )  ->  { n }  =  { N } )
2320, 22fveq12d 5561 . . . . . . . . . 10  |-  ( ( n  =  N  /\  z  =ring )  ->  ( (RSpan `  z ) `  {
n } )  =  ( S `  { N } ) )
2417, 23oveq12d 5936 . . . . . . . . 9  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z ~QG  ( (RSpan `  z ) `  { n } ) )  =  (ring ~QG  ( S `  { N } ) ) )
2517, 24oveq12d 5936 . . . . . . . 8  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) ) )
26 znval.u . . . . . . . 8  |-  U  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) )
2725, 26eqtr4di 2244 . . . . . . 7  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  =  U )
2816, 27sylan9eqr 2248 . . . . . 6  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  s  =  U )
29 eqid 2193 . . . . . . . . . . . 12  |-  ( ZRHom `  s )  =  ( ZRHom `  s )
3029zrhex 14109 . . . . . . . . . . 11  |-  ( s  e.  _V  ->  ( ZRHom `  s )  e. 
_V )
3130elv 2764 . . . . . . . . . 10  |-  ( ZRHom `  s )  e.  _V
3231resex 4983 . . . . . . . . 9  |-  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ , 
( 0..^ n ) ) )  e.  _V
3332a1i 9 . . . . . . . 8  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  e.  _V )
34 id 19 . . . . . . . . . . . 12  |-  ( f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  ->  f  =  ( ( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )
3528fveq2d 5558 . . . . . . . . . . . . . 14  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ZRHom `  s )  =  ( ZRHom `  U )
)
36 simpll 527 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  n  =  N )
3736eqeq1d 2202 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( n  =  0  <->  N  = 
0 ) )
3836oveq2d 5934 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( 0..^ n )  =  ( 0..^ N ) )
3937, 38ifbieq2d 3581 . . . . . . . . . . . . . . 15  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  if (
n  =  0 ,  ZZ ,  ( 0..^ n ) )  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )
40 znval.w . . . . . . . . . . . . . . 15  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
4139, 40eqtr4di 2244 . . . . . . . . . . . . . 14  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  if (
n  =  0 ,  ZZ ,  ( 0..^ n ) )  =  W )
4235, 41reseq12d 4943 . . . . . . . . . . . . 13  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  =  ( ( ZRHom `  U )  |`  W ) )
43 znval.f . . . . . . . . . . . . 13  |-  F  =  ( ( ZRHom `  U )  |`  W )
4442, 43eqtr4di 2244 . . . . . . . . . . . 12  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  =  F )
4534, 44sylan9eqr 2248 . . . . . . . . . . 11  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  f  =  F )
4645coeq1d 4823 . . . . . . . . . 10  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  ( f  o.  <_  )  =  ( F  o.  <_  )
)
4745cnveqd 4838 . . . . . . . . . 10  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  `' f  =  `' F )
4846, 47coeq12d 4826 . . . . . . . . 9  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  ( (
f  o.  <_  )  o.  `' f )  =  ( ( F  o.  <_  )  o.  `' F
) )
49 znval.l . . . . . . . . 9  |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )
5048, 49eqtr4di 2244 . . . . . . . 8  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  ( (
f  o.  <_  )  o.  `' f )  = 
.<_  )
5133, 50csbied 3127 . . . . . . 7  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  [_ ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ , 
( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
<_  )  o.  `' f )  =  .<_  )
5251opeq2d 3811 . . . . . 6  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  <. ( le
`  ndx ) ,  [_ ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  /  f ]_ (
( f  o.  <_  )  o.  `' f )
>.  =  <. ( le
`  ndx ) ,  .<_  >.
)
5328, 52oveq12d 5936 . . . . 5  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( s sSet  <.
( le `  ndx ) ,  [_ ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ , 
( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
<_  )  o.  `' f ) >. )  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. ) )
5415, 53csbied 3127 . . . 4  |-  ( ( n  =  N  /\  z  =ring )  ->  [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
)  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )
)
554, 54csbied 3127 . . 3  |-  ( n  =  N  ->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
)  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )
)
56 id 19 . . 3  |-  ( N  e.  NN0  ->  N  e. 
NN0 )
57 rspex 13970 . . . . . . . . . 10  |-  (ring  e.  Ring  -> 
(RSpan ` ring )  e.  _V )
583, 57ax-mp 5 . . . . . . . . 9  |-  (RSpan ` ring )  e.  _V
5919, 58eqeltri 2266 . . . . . . . 8  |-  S  e. 
_V
60 snexg 4213 . . . . . . . 8  |-  ( N  e.  NN0  ->  { N }  e.  _V )
61 fvexg 5573 . . . . . . . 8  |-  ( ( S  e.  _V  /\  { N }  e.  _V )  ->  ( S `  { N } )  e. 
_V )
6259, 60, 61sylancr 414 . . . . . . 7  |-  ( N  e.  NN0  ->  ( S `
 { N }
)  e.  _V )
63 eqgex 13291 . . . . . . 7  |-  ( (ring  e. 
Ring  /\  ( S `  { N } )  e. 
_V )  ->  (ring ~QG  ( S `  { N } ) )  e. 
_V )
643, 62, 63sylancr 414 . . . . . 6  |-  ( N  e.  NN0  ->  (ring ~QG  ( S `  { N } ) )  e. 
_V )
65 qusex 12908 . . . . . 6  |-  ( (ring  e. 
Ring  /\  (ring ~QG  ( S `  { N } ) )  e. 
_V )  ->  (ring  /.s  (ring ~QG  ( S `  { N } ) ) )  e.  _V )
663, 64, 65sylancr 414 . . . . 5  |-  ( N  e.  NN0  ->  (ring  /.s  (ring ~QG  ( S `  { N } ) ) )  e.  _V )
6726, 66eqeltrid 2280 . . . 4  |-  ( N  e.  NN0  ->  U  e. 
_V )
68 plendxnn 12820 . . . . 5  |-  ( le
`  ndx )  e.  NN
6968a1i 9 . . . 4  |-  ( N  e.  NN0  ->  ( le
`  ndx )  e.  NN )
70 eqid 2193 . . . . . . . . . . 11  |-  ( ZRHom `  U )  =  ( ZRHom `  U )
7170zrhex 14109 . . . . . . . . . 10  |-  ( U  e.  _V  ->  ( ZRHom `  U )  e. 
_V )
7267, 71syl 14 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ZRHom `  U )  e.  _V )
73 resexg 4982 . . . . . . . . 9  |-  ( ( ZRHom `  U )  e.  _V  ->  ( ( ZRHom `  U )  |`  W )  e.  _V )
7472, 73syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( ZRHom `  U )  |`  W )  e.  _V )
7543, 74eqeltrid 2280 . . . . . . 7  |-  ( N  e.  NN0  ->  F  e. 
_V )
76 xrex 9922 . . . . . . . . 9  |-  RR*  e.  _V
7776, 76xpex 4774 . . . . . . . 8  |-  ( RR*  X. 
RR* )  e.  _V
78 lerelxr 8082 . . . . . . . 8  |-  <_  C_  ( RR*  X.  RR* )
7977, 78ssexi 4167 . . . . . . 7  |-  <_  e.  _V
80 coexg 5210 . . . . . . 7  |-  ( ( F  e.  _V  /\  <_  e.  _V )  -> 
( F  o.  <_  )  e.  _V )
8175, 79, 80sylancl 413 . . . . . 6  |-  ( N  e.  NN0  ->  ( F  o.  <_  )  e.  _V )
82 cnvexg 5203 . . . . . . 7  |-  ( F  e.  _V  ->  `' F  e.  _V )
8375, 82syl 14 . . . . . 6  |-  ( N  e.  NN0  ->  `' F  e.  _V )
84 coexg 5210 . . . . . 6  |-  ( ( ( F  o.  <_  )  e.  _V  /\  `' F  e.  _V )  ->  ( ( F  o.  <_  )  o.  `' F
)  e.  _V )
8581, 83, 84syl2anc 411 . . . . 5  |-  ( N  e.  NN0  ->  ( ( F  o.  <_  )  o.  `' F )  e.  _V )
8649, 85eqeltrid 2280 . . . 4  |-  ( N  e.  NN0  ->  .<_  e.  _V )
87 setsex 12650 . . . 4  |-  ( ( U  e.  _V  /\  ( le `  ndx )  e.  NN  /\  .<_  e.  _V )  ->  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )  e.  _V )
8867, 69, 86, 87syl3anc 1249 . . 3  |-  ( N  e.  NN0  ->  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )  e.  _V )
892, 55, 56, 88fvmptd3 5651 . 2  |-  ( N  e.  NN0  ->  (ℤ/n `  N
)  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )
)
901, 89eqtrid 2238 1  |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <. ( le `  ndx ) , 
.<_  >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   [_csb 3080   ifcif 3557   {csn 3618   <.cop 3621    X. cxp 4657   `'ccnv 4658    |` cres 4661    o. ccom 4663   ` cfv 5254  (class class class)co 5918   0cc0 7872   RR*cxr 8053    <_ cle 8055   NNcn 8982   NN0cn0 9240   ZZcz 9317  ..^cfzo 10208   ndxcnx 12615   sSet csts 12616   lecple 12702    /.s cqus 12883   ~QG cqg 13239   Ringcrg 13492  RSpancrsp 13964  ℤringczring 14078   ZRHomczrh 14099  ℤ/nczn 14101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-ec 6589  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-fz 10075  df-cj 10986  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-sca 12711  df-vsca 12712  df-ip 12713  df-ple 12715  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-eqg 13242  df-cmn 13356  df-mgp 13417  df-ur 13456  df-ring 13494  df-cring 13495  df-rhm 13648  df-subrg 13715  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-rsp 13966  df-icnfld 14048  df-zring 14079  df-zrh 14102  df-zn 14104
This theorem is referenced by:  znle  14125  znval2  14126  znbaslemnn  14127
  Copyright terms: Public domain W3C validator