ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znval Unicode version

Theorem znval 14600
Description: The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s  |-  S  =  (RSpan ` ring )
znval.u  |-  U  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) )
znval.y  |-  Y  =  (ℤ/n `  N )
znval.f  |-  F  =  ( ( ZRHom `  U )  |`  W )
znval.w  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
znval.l  |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )
Assertion
Ref Expression
znval  |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <. ( le `  ndx ) , 
.<_  >. ) )

Proof of Theorem znval
Dummy variables  f  n  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znval.y . 2  |-  Y  =  (ℤ/n `  N )
2 df-zn 14580 . . 3  |- ℤ/n =  ( n  e. 
NN0  |->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
) )
3 zringring 14557 . . . . 5  |-ring  e.  Ring
43a1i 9 . . . 4  |-  ( n  =  N  ->ring  e.  Ring )
5 vex 2802 . . . . . . 7  |-  z  e. 
_V
6 rspex 14438 . . . . . . . . . 10  |-  ( z  e.  _V  ->  (RSpan `  z )  e.  _V )
76elv 2803 . . . . . . . . 9  |-  (RSpan `  z )  e.  _V
8 vex 2802 . . . . . . . . . 10  |-  n  e. 
_V
98snex 4269 . . . . . . . . 9  |-  { n }  e.  _V
107, 9fvex 5647 . . . . . . . 8  |-  ( (RSpan `  z ) `  {
n } )  e. 
_V
11 eqgex 13758 . . . . . . . 8  |-  ( ( z  e.  _V  /\  ( (RSpan `  z ) `  { n } )  e.  _V )  -> 
( z ~QG  ( (RSpan `  z
) `  { n } ) )  e. 
_V )
125, 10, 11mp2an 426 . . . . . . 7  |-  ( z ~QG  ( (RSpan `  z ) `  { n } ) )  e.  _V
13 qusex 13358 . . . . . . 7  |-  ( ( z  e.  _V  /\  ( z ~QG  ( (RSpan `  z
) `  { n } ) )  e. 
_V )  ->  (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  e.  _V )
145, 12, 13mp2an 426 . . . . . 6  |-  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  e.  _V
1514a1i 9 . . . . 5  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  e.  _V )
16 id 19 . . . . . . 7  |-  ( s  =  ( z  /.s  (
z ~QG 
( (RSpan `  z
) `  { n } ) ) )  ->  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )
17 simpr 110 . . . . . . . . 9  |-  ( ( n  =  N  /\  z  =ring )  ->  z  =ring )
1817fveq2d 5631 . . . . . . . . . . . 12  |-  ( ( n  =  N  /\  z  =ring )  ->  (RSpan `  z )  =  (RSpan ` ring ) )
19 znval.s . . . . . . . . . . . 12  |-  S  =  (RSpan ` ring )
2018, 19eqtr4di 2280 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  z  =ring )  ->  (RSpan `  z )  =  S )
21 simpl 109 . . . . . . . . . . . 12  |-  ( ( n  =  N  /\  z  =ring )  ->  n  =  N )
2221sneqd 3679 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  z  =ring )  ->  { n }  =  { N } )
2320, 22fveq12d 5634 . . . . . . . . . 10  |-  ( ( n  =  N  /\  z  =ring )  ->  ( (RSpan `  z ) `  {
n } )  =  ( S `  { N } ) )
2417, 23oveq12d 6019 . . . . . . . . 9  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z ~QG  ( (RSpan `  z ) `  { n } ) )  =  (ring ~QG  ( S `  { N } ) ) )
2517, 24oveq12d 6019 . . . . . . . 8  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) ) )
26 znval.u . . . . . . . 8  |-  U  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) )
2725, 26eqtr4di 2280 . . . . . . 7  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  =  U )
2816, 27sylan9eqr 2284 . . . . . 6  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  s  =  U )
29 eqid 2229 . . . . . . . . . . . 12  |-  ( ZRHom `  s )  =  ( ZRHom `  s )
3029zrhex 14585 . . . . . . . . . . 11  |-  ( s  e.  _V  ->  ( ZRHom `  s )  e. 
_V )
3130elv 2803 . . . . . . . . . 10  |-  ( ZRHom `  s )  e.  _V
3231resex 5046 . . . . . . . . 9  |-  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ , 
( 0..^ n ) ) )  e.  _V
3332a1i 9 . . . . . . . 8  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  e.  _V )
34 id 19 . . . . . . . . . . . 12  |-  ( f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  ->  f  =  ( ( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )
3528fveq2d 5631 . . . . . . . . . . . . . 14  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ZRHom `  s )  =  ( ZRHom `  U )
)
36 simpll 527 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  n  =  N )
3736eqeq1d 2238 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( n  =  0  <->  N  = 
0 ) )
3836oveq2d 6017 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( 0..^ n )  =  ( 0..^ N ) )
3937, 38ifbieq2d 3627 . . . . . . . . . . . . . . 15  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  if (
n  =  0 ,  ZZ ,  ( 0..^ n ) )  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )
40 znval.w . . . . . . . . . . . . . . 15  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
4139, 40eqtr4di 2280 . . . . . . . . . . . . . 14  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  if (
n  =  0 ,  ZZ ,  ( 0..^ n ) )  =  W )
4235, 41reseq12d 5006 . . . . . . . . . . . . 13  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  =  ( ( ZRHom `  U )  |`  W ) )
43 znval.f . . . . . . . . . . . . 13  |-  F  =  ( ( ZRHom `  U )  |`  W )
4442, 43eqtr4di 2280 . . . . . . . . . . . 12  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  =  F )
4534, 44sylan9eqr 2284 . . . . . . . . . . 11  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  f  =  F )
4645coeq1d 4883 . . . . . . . . . 10  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  ( f  o.  <_  )  =  ( F  o.  <_  )
)
4745cnveqd 4898 . . . . . . . . . 10  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  `' f  =  `' F )
4846, 47coeq12d 4886 . . . . . . . . 9  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  ( (
f  o.  <_  )  o.  `' f )  =  ( ( F  o.  <_  )  o.  `' F
) )
49 znval.l . . . . . . . . 9  |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )
5048, 49eqtr4di 2280 . . . . . . . 8  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  ( (
f  o.  <_  )  o.  `' f )  = 
.<_  )
5133, 50csbied 3171 . . . . . . 7  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  [_ ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ , 
( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
<_  )  o.  `' f )  =  .<_  )
5251opeq2d 3864 . . . . . 6  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  <. ( le
`  ndx ) ,  [_ ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  /  f ]_ (
( f  o.  <_  )  o.  `' f )
>.  =  <. ( le
`  ndx ) ,  .<_  >.
)
5328, 52oveq12d 6019 . . . . 5  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( s sSet  <.
( le `  ndx ) ,  [_ ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ , 
( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
<_  )  o.  `' f ) >. )  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. ) )
5415, 53csbied 3171 . . . 4  |-  ( ( n  =  N  /\  z  =ring )  ->  [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
)  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )
)
554, 54csbied 3171 . . 3  |-  ( n  =  N  ->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
)  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )
)
56 id 19 . . 3  |-  ( N  e.  NN0  ->  N  e. 
NN0 )
57 rspex 14438 . . . . . . . . . 10  |-  (ring  e.  Ring  -> 
(RSpan ` ring )  e.  _V )
583, 57ax-mp 5 . . . . . . . . 9  |-  (RSpan ` ring )  e.  _V
5919, 58eqeltri 2302 . . . . . . . 8  |-  S  e. 
_V
60 snexg 4268 . . . . . . . 8  |-  ( N  e.  NN0  ->  { N }  e.  _V )
61 fvexg 5646 . . . . . . . 8  |-  ( ( S  e.  _V  /\  { N }  e.  _V )  ->  ( S `  { N } )  e. 
_V )
6259, 60, 61sylancr 414 . . . . . . 7  |-  ( N  e.  NN0  ->  ( S `
 { N }
)  e.  _V )
63 eqgex 13758 . . . . . . 7  |-  ( (ring  e. 
Ring  /\  ( S `  { N } )  e. 
_V )  ->  (ring ~QG  ( S `  { N } ) )  e. 
_V )
643, 62, 63sylancr 414 . . . . . 6  |-  ( N  e.  NN0  ->  (ring ~QG  ( S `  { N } ) )  e. 
_V )
65 qusex 13358 . . . . . 6  |-  ( (ring  e. 
Ring  /\  (ring ~QG  ( S `  { N } ) )  e. 
_V )  ->  (ring  /.s  (ring ~QG  ( S `  { N } ) ) )  e.  _V )
663, 64, 65sylancr 414 . . . . 5  |-  ( N  e.  NN0  ->  (ring  /.s  (ring ~QG  ( S `  { N } ) ) )  e.  _V )
6726, 66eqeltrid 2316 . . . 4  |-  ( N  e.  NN0  ->  U  e. 
_V )
68 plendxnn 13236 . . . . 5  |-  ( le
`  ndx )  e.  NN
6968a1i 9 . . . 4  |-  ( N  e.  NN0  ->  ( le
`  ndx )  e.  NN )
70 eqid 2229 . . . . . . . . . . 11  |-  ( ZRHom `  U )  =  ( ZRHom `  U )
7170zrhex 14585 . . . . . . . . . 10  |-  ( U  e.  _V  ->  ( ZRHom `  U )  e. 
_V )
7267, 71syl 14 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ZRHom `  U )  e.  _V )
73 resexg 5045 . . . . . . . . 9  |-  ( ( ZRHom `  U )  e.  _V  ->  ( ( ZRHom `  U )  |`  W )  e.  _V )
7472, 73syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( ZRHom `  U )  |`  W )  e.  _V )
7543, 74eqeltrid 2316 . . . . . . 7  |-  ( N  e.  NN0  ->  F  e. 
_V )
76 xrex 10052 . . . . . . . . 9  |-  RR*  e.  _V
7776, 76xpex 4834 . . . . . . . 8  |-  ( RR*  X. 
RR* )  e.  _V
78 lerelxr 8209 . . . . . . . 8  |-  <_  C_  ( RR*  X.  RR* )
7977, 78ssexi 4222 . . . . . . 7  |-  <_  e.  _V
80 coexg 5273 . . . . . . 7  |-  ( ( F  e.  _V  /\  <_  e.  _V )  -> 
( F  o.  <_  )  e.  _V )
8175, 79, 80sylancl 413 . . . . . 6  |-  ( N  e.  NN0  ->  ( F  o.  <_  )  e.  _V )
82 cnvexg 5266 . . . . . . 7  |-  ( F  e.  _V  ->  `' F  e.  _V )
8375, 82syl 14 . . . . . 6  |-  ( N  e.  NN0  ->  `' F  e.  _V )
84 coexg 5273 . . . . . 6  |-  ( ( ( F  o.  <_  )  e.  _V  /\  `' F  e.  _V )  ->  ( ( F  o.  <_  )  o.  `' F
)  e.  _V )
8581, 83, 84syl2anc 411 . . . . 5  |-  ( N  e.  NN0  ->  ( ( F  o.  <_  )  o.  `' F )  e.  _V )
8649, 85eqeltrid 2316 . . . 4  |-  ( N  e.  NN0  ->  .<_  e.  _V )
87 setsex 13064 . . . 4  |-  ( ( U  e.  _V  /\  ( le `  ndx )  e.  NN  /\  .<_  e.  _V )  ->  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )  e.  _V )
8867, 69, 86, 87syl3anc 1271 . . 3  |-  ( N  e.  NN0  ->  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )  e.  _V )
892, 55, 56, 88fvmptd3 5728 . 2  |-  ( N  e.  NN0  ->  (ℤ/n `  N
)  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )
)
901, 89eqtrid 2274 1  |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <. ( le `  ndx ) , 
.<_  >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   [_csb 3124   ifcif 3602   {csn 3666   <.cop 3669    X. cxp 4717   `'ccnv 4718    |` cres 4721    o. ccom 4723   ` cfv 5318  (class class class)co 6001   0cc0 7999   RR*cxr 8180    <_ cle 8182   NNcn 9110   NN0cn0 9369   ZZcz 9446  ..^cfzo 10338   ndxcnx 13029   sSet csts 13030   lecple 13117    /.s cqus 13333   ~QG cqg 13706   Ringcrg 13959  RSpancrsp 14432  ℤringczring 14554   ZRHomczrh 14575  ℤ/nczn 14577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-ec 6682  df-map 6797  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-uz 9723  df-rp 9850  df-fz 10205  df-cj 11353  df-abs 11510  df-struct 13034  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-starv 13125  df-sca 13126  df-vsca 13127  df-ip 13128  df-tset 13129  df-ple 13130  df-ds 13132  df-unif 13133  df-0g 13291  df-topgen 13293  df-iimas 13335  df-qus 13336  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-subg 13707  df-eqg 13709  df-cmn 13823  df-mgp 13884  df-ur 13923  df-ring 13961  df-cring 13962  df-rhm 14116  df-subrg 14183  df-lsp 14351  df-sra 14399  df-rgmod 14400  df-rsp 14434  df-bl 14510  df-mopn 14511  df-fg 14513  df-metu 14514  df-cnfld 14521  df-zring 14555  df-zrh 14578  df-zn 14580
This theorem is referenced by:  znle  14601  znval2  14602  znbaslemnn  14603
  Copyright terms: Public domain W3C validator