ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znval Unicode version

Theorem znval 14398
Description: The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znval.s  |-  S  =  (RSpan ` ring )
znval.u  |-  U  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) )
znval.y  |-  Y  =  (ℤ/n `  N )
znval.f  |-  F  =  ( ( ZRHom `  U )  |`  W )
znval.w  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
znval.l  |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )
Assertion
Ref Expression
znval  |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <. ( le `  ndx ) , 
.<_  >. ) )

Proof of Theorem znval
Dummy variables  f  n  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znval.y . 2  |-  Y  =  (ℤ/n `  N )
2 df-zn 14378 . . 3  |- ℤ/n =  ( n  e. 
NN0  |->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
) )
3 zringring 14355 . . . . 5  |-ring  e.  Ring
43a1i 9 . . . 4  |-  ( n  =  N  ->ring  e.  Ring )
5 vex 2775 . . . . . . 7  |-  z  e. 
_V
6 rspex 14236 . . . . . . . . . 10  |-  ( z  e.  _V  ->  (RSpan `  z )  e.  _V )
76elv 2776 . . . . . . . . 9  |-  (RSpan `  z )  e.  _V
8 vex 2775 . . . . . . . . . 10  |-  n  e. 
_V
98snex 4229 . . . . . . . . 9  |-  { n }  e.  _V
107, 9fvex 5596 . . . . . . . 8  |-  ( (RSpan `  z ) `  {
n } )  e. 
_V
11 eqgex 13557 . . . . . . . 8  |-  ( ( z  e.  _V  /\  ( (RSpan `  z ) `  { n } )  e.  _V )  -> 
( z ~QG  ( (RSpan `  z
) `  { n } ) )  e. 
_V )
125, 10, 11mp2an 426 . . . . . . 7  |-  ( z ~QG  ( (RSpan `  z ) `  { n } ) )  e.  _V
13 qusex 13157 . . . . . . 7  |-  ( ( z  e.  _V  /\  ( z ~QG  ( (RSpan `  z
) `  { n } ) )  e. 
_V )  ->  (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  e.  _V )
145, 12, 13mp2an 426 . . . . . 6  |-  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  e.  _V
1514a1i 9 . . . . 5  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  e.  _V )
16 id 19 . . . . . . 7  |-  ( s  =  ( z  /.s  (
z ~QG 
( (RSpan `  z
) `  { n } ) ) )  ->  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )
17 simpr 110 . . . . . . . . 9  |-  ( ( n  =  N  /\  z  =ring )  ->  z  =ring )
1817fveq2d 5580 . . . . . . . . . . . 12  |-  ( ( n  =  N  /\  z  =ring )  ->  (RSpan `  z )  =  (RSpan ` ring ) )
19 znval.s . . . . . . . . . . . 12  |-  S  =  (RSpan ` ring )
2018, 19eqtr4di 2256 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  z  =ring )  ->  (RSpan `  z )  =  S )
21 simpl 109 . . . . . . . . . . . 12  |-  ( ( n  =  N  /\  z  =ring )  ->  n  =  N )
2221sneqd 3646 . . . . . . . . . . 11  |-  ( ( n  =  N  /\  z  =ring )  ->  { n }  =  { N } )
2320, 22fveq12d 5583 . . . . . . . . . 10  |-  ( ( n  =  N  /\  z  =ring )  ->  ( (RSpan `  z ) `  {
n } )  =  ( S `  { N } ) )
2417, 23oveq12d 5962 . . . . . . . . 9  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z ~QG  ( (RSpan `  z ) `  { n } ) )  =  (ring ~QG  ( S `  { N } ) ) )
2517, 24oveq12d 5962 . . . . . . . 8  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) ) )
26 znval.u . . . . . . . 8  |-  U  =  (ring 
/.s  (ring ~QG  ( S `  { N } ) ) )
2725, 26eqtr4di 2256 . . . . . . 7  |-  ( ( n  =  N  /\  z  =ring )  ->  ( z 
/.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  =  U )
2816, 27sylan9eqr 2260 . . . . . 6  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  s  =  U )
29 eqid 2205 . . . . . . . . . . . 12  |-  ( ZRHom `  s )  =  ( ZRHom `  s )
3029zrhex 14383 . . . . . . . . . . 11  |-  ( s  e.  _V  ->  ( ZRHom `  s )  e. 
_V )
3130elv 2776 . . . . . . . . . 10  |-  ( ZRHom `  s )  e.  _V
3231resex 5000 . . . . . . . . 9  |-  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ , 
( 0..^ n ) ) )  e.  _V
3332a1i 9 . . . . . . . 8  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  e.  _V )
34 id 19 . . . . . . . . . . . 12  |-  ( f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  ->  f  =  ( ( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )
3528fveq2d 5580 . . . . . . . . . . . . . 14  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ZRHom `  s )  =  ( ZRHom `  U )
)
36 simpll 527 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  n  =  N )
3736eqeq1d 2214 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( n  =  0  <->  N  = 
0 ) )
3836oveq2d 5960 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( 0..^ n )  =  ( 0..^ N ) )
3937, 38ifbieq2d 3595 . . . . . . . . . . . . . . 15  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  if (
n  =  0 ,  ZZ ,  ( 0..^ n ) )  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )
40 znval.w . . . . . . . . . . . . . . 15  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
4139, 40eqtr4di 2256 . . . . . . . . . . . . . 14  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  if (
n  =  0 ,  ZZ ,  ( 0..^ n ) )  =  W )
4235, 41reseq12d 4960 . . . . . . . . . . . . 13  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  =  ( ( ZRHom `  U )  |`  W ) )
43 znval.f . . . . . . . . . . . . 13  |-  F  =  ( ( ZRHom `  U )  |`  W )
4442, 43eqtr4di 2256 . . . . . . . . . . . 12  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  =  F )
4534, 44sylan9eqr 2260 . . . . . . . . . . 11  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  f  =  F )
4645coeq1d 4839 . . . . . . . . . 10  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  ( f  o.  <_  )  =  ( F  o.  <_  )
)
4745cnveqd 4854 . . . . . . . . . 10  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  `' f  =  `' F )
4846, 47coeq12d 4842 . . . . . . . . 9  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  ( (
f  o.  <_  )  o.  `' f )  =  ( ( F  o.  <_  )  o.  `' F
) )
49 znval.l . . . . . . . . 9  |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )
5048, 49eqtr4di 2256 . . . . . . . 8  |-  ( ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  /\  f  =  ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) ) )  ->  ( (
f  o.  <_  )  o.  `' f )  = 
.<_  )
5133, 50csbied 3140 . . . . . . 7  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  [_ ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ , 
( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
<_  )  o.  `' f )  =  .<_  )
5251opeq2d 3826 . . . . . 6  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  <. ( le
`  ndx ) ,  [_ ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  /  f ]_ (
( f  o.  <_  )  o.  `' f )
>.  =  <. ( le
`  ndx ) ,  .<_  >.
)
5328, 52oveq12d 5962 . . . . 5  |-  ( ( ( n  =  N  /\  z  =ring )  /\  s  =  ( z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) ) )  ->  ( s sSet  <.
( le `  ndx ) ,  [_ ( ( ZRHom `  s )  |`  if ( n  =  0 ,  ZZ , 
( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
<_  )  o.  `' f ) >. )  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. ) )
5415, 53csbied 3140 . . . 4  |-  ( ( n  =  N  /\  z  =ring )  ->  [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
)  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )
)
554, 54csbied 3140 . . 3  |-  ( n  =  N  ->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
)  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )
)
56 id 19 . . 3  |-  ( N  e.  NN0  ->  N  e. 
NN0 )
57 rspex 14236 . . . . . . . . . 10  |-  (ring  e.  Ring  -> 
(RSpan ` ring )  e.  _V )
583, 57ax-mp 5 . . . . . . . . 9  |-  (RSpan ` ring )  e.  _V
5919, 58eqeltri 2278 . . . . . . . 8  |-  S  e. 
_V
60 snexg 4228 . . . . . . . 8  |-  ( N  e.  NN0  ->  { N }  e.  _V )
61 fvexg 5595 . . . . . . . 8  |-  ( ( S  e.  _V  /\  { N }  e.  _V )  ->  ( S `  { N } )  e. 
_V )
6259, 60, 61sylancr 414 . . . . . . 7  |-  ( N  e.  NN0  ->  ( S `
 { N }
)  e.  _V )
63 eqgex 13557 . . . . . . 7  |-  ( (ring  e. 
Ring  /\  ( S `  { N } )  e. 
_V )  ->  (ring ~QG  ( S `  { N } ) )  e. 
_V )
643, 62, 63sylancr 414 . . . . . 6  |-  ( N  e.  NN0  ->  (ring ~QG  ( S `  { N } ) )  e. 
_V )
65 qusex 13157 . . . . . 6  |-  ( (ring  e. 
Ring  /\  (ring ~QG  ( S `  { N } ) )  e. 
_V )  ->  (ring  /.s  (ring ~QG  ( S `  { N } ) ) )  e.  _V )
663, 64, 65sylancr 414 . . . . 5  |-  ( N  e.  NN0  ->  (ring  /.s  (ring ~QG  ( S `  { N } ) ) )  e.  _V )
6726, 66eqeltrid 2292 . . . 4  |-  ( N  e.  NN0  ->  U  e. 
_V )
68 plendxnn 13035 . . . . 5  |-  ( le
`  ndx )  e.  NN
6968a1i 9 . . . 4  |-  ( N  e.  NN0  ->  ( le
`  ndx )  e.  NN )
70 eqid 2205 . . . . . . . . . . 11  |-  ( ZRHom `  U )  =  ( ZRHom `  U )
7170zrhex 14383 . . . . . . . . . 10  |-  ( U  e.  _V  ->  ( ZRHom `  U )  e. 
_V )
7267, 71syl 14 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ZRHom `  U )  e.  _V )
73 resexg 4999 . . . . . . . . 9  |-  ( ( ZRHom `  U )  e.  _V  ->  ( ( ZRHom `  U )  |`  W )  e.  _V )
7472, 73syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( ZRHom `  U )  |`  W )  e.  _V )
7543, 74eqeltrid 2292 . . . . . . 7  |-  ( N  e.  NN0  ->  F  e. 
_V )
76 xrex 9978 . . . . . . . . 9  |-  RR*  e.  _V
7776, 76xpex 4790 . . . . . . . 8  |-  ( RR*  X. 
RR* )  e.  _V
78 lerelxr 8135 . . . . . . . 8  |-  <_  C_  ( RR*  X.  RR* )
7977, 78ssexi 4182 . . . . . . 7  |-  <_  e.  _V
80 coexg 5227 . . . . . . 7  |-  ( ( F  e.  _V  /\  <_  e.  _V )  -> 
( F  o.  <_  )  e.  _V )
8175, 79, 80sylancl 413 . . . . . 6  |-  ( N  e.  NN0  ->  ( F  o.  <_  )  e.  _V )
82 cnvexg 5220 . . . . . . 7  |-  ( F  e.  _V  ->  `' F  e.  _V )
8375, 82syl 14 . . . . . 6  |-  ( N  e.  NN0  ->  `' F  e.  _V )
84 coexg 5227 . . . . . 6  |-  ( ( ( F  o.  <_  )  e.  _V  /\  `' F  e.  _V )  ->  ( ( F  o.  <_  )  o.  `' F
)  e.  _V )
8581, 83, 84syl2anc 411 . . . . 5  |-  ( N  e.  NN0  ->  ( ( F  o.  <_  )  o.  `' F )  e.  _V )
8649, 85eqeltrid 2292 . . . 4  |-  ( N  e.  NN0  ->  .<_  e.  _V )
87 setsex 12864 . . . 4  |-  ( ( U  e.  _V  /\  ( le `  ndx )  e.  NN  /\  .<_  e.  _V )  ->  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )  e.  _V )
8867, 69, 86, 87syl3anc 1250 . . 3  |-  ( N  e.  NN0  ->  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )  e.  _V )
892, 55, 56, 88fvmptd3 5673 . 2  |-  ( N  e.  NN0  ->  (ℤ/n `  N
)  =  ( U sSet  <. ( le `  ndx ) ,  .<_  >. )
)
901, 89eqtrid 2250 1  |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <. ( le `  ndx ) , 
.<_  >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   [_csb 3093   ifcif 3571   {csn 3633   <.cop 3636    X. cxp 4673   `'ccnv 4674    |` cres 4677    o. ccom 4679   ` cfv 5271  (class class class)co 5944   0cc0 7925   RR*cxr 8106    <_ cle 8108   NNcn 9036   NN0cn0 9295   ZZcz 9372  ..^cfzo 10264   ndxcnx 12829   sSet csts 12830   lecple 12916    /.s cqus 13132   ~QG cqg 13505   Ringcrg 13758  RSpancrsp 14230  ℤringczring 14352   ZRHomczrh 14373  ℤ/nczn 14375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-ec 6622  df-map 6737  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-dec 9505  df-uz 9649  df-rp 9776  df-fz 10131  df-cj 11153  df-abs 11310  df-struct 12834  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-starv 12924  df-sca 12925  df-vsca 12926  df-ip 12927  df-tset 12928  df-ple 12929  df-ds 12931  df-unif 12932  df-0g 13090  df-topgen 13092  df-iimas 13134  df-qus 13135  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-subg 13506  df-eqg 13508  df-cmn 13622  df-mgp 13683  df-ur 13722  df-ring 13760  df-cring 13761  df-rhm 13914  df-subrg 13981  df-lsp 14149  df-sra 14197  df-rgmod 14198  df-rsp 14232  df-bl 14308  df-mopn 14309  df-fg 14311  df-metu 14312  df-cnfld 14319  df-zring 14353  df-zrh 14376  df-zn 14378
This theorem is referenced by:  znle  14399  znval2  14400  znbaslemnn  14401
  Copyright terms: Public domain W3C validator