ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq12i Unicode version

Theorem coeq12i 4640
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
Hypotheses
Ref Expression
coeq12i.1  |-  A  =  B
coeq12i.2  |-  C  =  D
Assertion
Ref Expression
coeq12i  |-  ( A  o.  C )  =  ( B  o.  D
)

Proof of Theorem coeq12i
StepHypRef Expression
1 coeq12i.1 . . 3  |-  A  =  B
21coeq1i 4636 . 2  |-  ( A  o.  C )  =  ( B  o.  C
)
3 coeq12i.2 . . 3  |-  C  =  D
43coeq2i 4637 . 2  |-  ( B  o.  C )  =  ( B  o.  D
)
52, 4eqtri 2120 1  |-  ( A  o.  C )  =  ( B  o.  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1299    o. ccom 4481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-in 3027  df-ss 3034  df-br 3876  df-opab 3930  df-co 4486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator