ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq12i Unicode version

Theorem coeq12i 4825
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
Hypotheses
Ref Expression
coeq12i.1  |-  A  =  B
coeq12i.2  |-  C  =  D
Assertion
Ref Expression
coeq12i  |-  ( A  o.  C )  =  ( B  o.  D
)

Proof of Theorem coeq12i
StepHypRef Expression
1 coeq12i.1 . . 3  |-  A  =  B
21coeq1i 4821 . 2  |-  ( A  o.  C )  =  ( B  o.  C
)
3 coeq12i.2 . . 3  |-  C  =  D
43coeq2i 4822 . 2  |-  ( B  o.  C )  =  ( B  o.  D
)
52, 4eqtri 2214 1  |-  ( A  o.  C )  =  ( B  o.  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    o. ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166  df-br 4030  df-opab 4091  df-co 4668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator