ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq2d Unicode version

Theorem coeq2d 4818
Description: Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
Hypothesis
Ref Expression
coeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
coeq2d  |-  ( ph  ->  ( C  o.  A
)  =  ( C  o.  B ) )

Proof of Theorem coeq2d
StepHypRef Expression
1 coeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 coeq2 4814 . 2  |-  ( A  =  B  ->  ( C  o.  A )  =  ( C  o.  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  o.  A
)  =  ( C  o.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    o. ccom 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166  df-br 4030  df-opab 4091  df-co 4664
This theorem is referenced by:  coeq12d  4820  relcoi1  5189  f1ococnv1  5521  funcoeqres  5523  fcof1o  5824  foeqcnvco  5825  mapen  6893  hashfacen  10897  prdsex  12870
  Copyright terms: Public domain W3C validator