Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq2d Unicode version

Theorem coeq2d 4696
 Description: Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
Hypothesis
Ref Expression
coeq1d.1
Assertion
Ref Expression
coeq2d

Proof of Theorem coeq2d
StepHypRef Expression
1 coeq1d.1 . 2
2 coeq2 4692 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1331   ccom 4538 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-in 3072  df-ss 3079  df-br 3925  df-opab 3985  df-co 4543 This theorem is referenced by:  coeq12d  4698  relcoi1  5065  f1ococnv1  5389  funcoeqres  5391  fcof1o  5683  foeqcnvco  5684  mapen  6733  hashfacen  10572
 Copyright terms: Public domain W3C validator