ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq2d Unicode version

Theorem coeq2d 4613
Description: Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
Hypothesis
Ref Expression
coeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
coeq2d  |-  ( ph  ->  ( C  o.  A
)  =  ( C  o.  B ) )

Proof of Theorem coeq2d
StepHypRef Expression
1 coeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 coeq2 4609 . 2  |-  ( A  =  B  ->  ( C  o.  A )  =  ( C  o.  B ) )
31, 2syl 14 1  |-  ( ph  ->  ( C  o.  A
)  =  ( C  o.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    o. ccom 4458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-in 3008  df-ss 3015  df-br 3854  df-opab 3908  df-co 4463
This theorem is referenced by:  coeq12d  4615  relcoi1  4977  f1ococnv1  5297  funcoeqres  5299  fcof1o  5584  foeqcnvco  5585  mapen  6618  hashfacen  10304
  Copyright terms: Public domain W3C validator