| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > coeq12d | GIF version | ||
| Description: Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.) | 
| Ref | Expression | 
|---|---|
| coeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| coeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) | 
| Ref | Expression | 
|---|---|
| coeq12d | ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | coeq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | coeq1d 4827 | . 2 ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) | 
| 3 | coeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | coeq2d 4828 | . 2 ⊢ (𝜑 → (𝐵 ∘ 𝐶) = (𝐵 ∘ 𝐷)) | 
| 5 | 2, 4 | eqtrd 2229 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∘ ccom 4667 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-br 4034 df-opab 4095 df-co 4672 | 
| This theorem is referenced by: znval 14192 znle2 14208 | 
| Copyright terms: Public domain | W3C validator |