| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coeq12d | GIF version | ||
| Description: Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
| Ref | Expression |
|---|---|
| coeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| coeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| coeq12d | ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | coeq1d 4847 | . 2 ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| 3 | coeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | coeq2d 4848 | . 2 ⊢ (𝜑 → (𝐵 ∘ 𝐶) = (𝐵 ∘ 𝐷)) |
| 5 | 2, 4 | eqtrd 2239 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∘ ccom 4687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-in 3176 df-ss 3183 df-br 4052 df-opab 4114 df-co 4692 |
| This theorem is referenced by: znval 14473 znle2 14489 |
| Copyright terms: Public domain | W3C validator |