| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coeq12d | GIF version | ||
| Description: Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
| Ref | Expression |
|---|---|
| coeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| coeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| coeq12d | ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | coeq1d 4882 | . 2 ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶)) |
| 3 | coeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | coeq2d 4883 | . 2 ⊢ (𝜑 → (𝐵 ∘ 𝐶) = (𝐵 ∘ 𝐷)) |
| 5 | 2, 4 | eqtrd 2262 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∘ ccom 4722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-br 4083 df-opab 4145 df-co 4727 |
| This theorem is referenced by: znval 14594 znle2 14610 |
| Copyright terms: Public domain | W3C validator |