ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq1i Unicode version

Theorem coeq1i 4841
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
Hypothesis
Ref Expression
coeq1i.1  |-  A  =  B
Assertion
Ref Expression
coeq1i  |-  ( A  o.  C )  =  ( B  o.  C
)

Proof of Theorem coeq1i
StepHypRef Expression
1 coeq1i.1 . 2  |-  A  =  B
2 coeq1 4839 . 2  |-  ( A  =  B  ->  ( A  o.  C )  =  ( B  o.  C ) )
31, 2ax-mp 5 1  |-  ( A  o.  C )  =  ( B  o.  C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    o. ccom 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-in 3173  df-ss 3180  df-br 4048  df-opab 4110  df-co 4688
This theorem is referenced by:  coeq12i  4845  cocnvcnv1  5198  upxp  14788  uptx  14790
  Copyright terms: Public domain W3C validator