ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq1i Unicode version

Theorem coeq1i 4880
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
Hypothesis
Ref Expression
coeq1i.1  |-  A  =  B
Assertion
Ref Expression
coeq1i  |-  ( A  o.  C )  =  ( B  o.  C
)

Proof of Theorem coeq1i
StepHypRef Expression
1 coeq1i.1 . 2  |-  A  =  B
2 coeq1 4878 . 2  |-  ( A  =  B  ->  ( A  o.  C )  =  ( B  o.  C ) )
31, 2ax-mp 5 1  |-  ( A  o.  C )  =  ( B  o.  C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    o. ccom 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210  df-br 4083  df-opab 4145  df-co 4727
This theorem is referenced by:  coeq12i  4884  cocnvcnv1  5238  upxp  14940  uptx  14942
  Copyright terms: Public domain W3C validator