![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coeq12i | GIF version |
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
Ref | Expression |
---|---|
coeq12i.1 | ⊢ 𝐴 = 𝐵 |
coeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
coeq12i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | coeq1i 4807 | . 2 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
3 | coeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | coeq2i 4808 | . 2 ⊢ (𝐵 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
5 | 2, 4 | eqtri 2210 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∘ ccom 4651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-in 3150 df-ss 3157 df-br 4022 df-opab 4083 df-co 4656 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |