ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq2i Unicode version

Theorem coeq2i 4856
Description: Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
Hypothesis
Ref Expression
coeq1i.1  |-  A  =  B
Assertion
Ref Expression
coeq2i  |-  ( C  o.  A )  =  ( C  o.  B
)

Proof of Theorem coeq2i
StepHypRef Expression
1 coeq1i.1 . 2  |-  A  =  B
2 coeq2 4854 . 2  |-  ( A  =  B  ->  ( C  o.  A )  =  ( C  o.  B ) )
31, 2ax-mp 5 1  |-  ( C  o.  A )  =  ( C  o.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    o. ccom 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-in 3180  df-ss 3187  df-br 4060  df-opab 4122  df-co 4702
This theorem is referenced by:  coeq12i  4859  cocnvcnv2  5213  co01  5216  cocnvres  5226  fcoi1  5478  dftpos2  6370  tposco  6384
  Copyright terms: Public domain W3C validator