ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsaddre2b Unicode version

Theorem dvdsaddre2b 11866
Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 11865 only requiring  B to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
dvdsaddre2b  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )

Proof of Theorem dvdsaddre2b
StepHypRef Expression
1 dvdszrcl 11817 . . . 4  |-  ( A 
||  B  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
21simprd 114 . . 3  |-  ( A 
||  B  ->  B  e.  ZZ )
32a1i 9 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  ->  B  e.  ZZ ) )
4 simpl3l 1054 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  C  e.  ZZ )
54zcnd 9394 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  C  e.  CC )
6 simpl2 1003 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  B  e.  RR )
76recnd 8004 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  B  e.  CC )
85, 7pncan2d 8288 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  (
( C  +  B
)  -  C )  =  B )
9 dvdszrcl 11817 . . . . . . 7  |-  ( A 
||  ( C  +  B )  ->  ( A  e.  ZZ  /\  ( C  +  B )  e.  ZZ ) )
109simprd 114 . . . . . 6  |-  ( A 
||  ( C  +  B )  ->  ( C  +  B )  e.  ZZ )
1110adantl 277 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  ( C  +  B )  e.  ZZ )
1211, 4zsubcld 9398 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  (
( C  +  B
)  -  C )  e.  ZZ )
138, 12eqeltrrd 2267 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  B  e.  ZZ )
1413ex 115 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  ( C  +  B )  ->  B  e.  ZZ ) )
15 dvdsadd2b 11865 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )
1615a1d 22 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( B  e.  RR  ->  ( A  ||  B  <->  A 
||  ( C  +  B ) ) ) )
17163exp 1204 . . . 4  |-  ( A  e.  ZZ  ->  ( B  e.  ZZ  ->  ( ( C  e.  ZZ  /\  A  ||  C )  ->  ( B  e.  RR  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) ) ) ) )
1817com24 87 . . 3  |-  ( A  e.  ZZ  ->  ( B  e.  RR  ->  ( ( C  e.  ZZ  /\  A  ||  C )  ->  ( B  e.  ZZ  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) ) ) ) )
19183imp 1195 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( B  e.  ZZ  ->  ( A  ||  B  <->  A 
||  ( C  +  B ) ) ) )
203, 14, 19pm5.21ndd 706 1  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2160   class class class wbr 4018  (class class class)co 5891   RRcr 7828    + caddc 7832    - cmin 8146   ZZcz 9271    || cdvds 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-inn 8938  df-n0 9195  df-z 9272  df-dvds 11813
This theorem is referenced by:  2lgsoddprmlem2  14851
  Copyright terms: Public domain W3C validator