ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsaddre2b Unicode version

Theorem dvdsaddre2b 12267
Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 12266 only requiring  B to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
dvdsaddre2b  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )

Proof of Theorem dvdsaddre2b
StepHypRef Expression
1 dvdszrcl 12218 . . . 4  |-  ( A 
||  B  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
21simprd 114 . . 3  |-  ( A 
||  B  ->  B  e.  ZZ )
32a1i 9 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  ->  B  e.  ZZ ) )
4 simpl3l 1055 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  C  e.  ZZ )
54zcnd 9531 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  C  e.  CC )
6 simpl2 1004 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  B  e.  RR )
76recnd 8136 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  B  e.  CC )
85, 7pncan2d 8420 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  (
( C  +  B
)  -  C )  =  B )
9 dvdszrcl 12218 . . . . . . 7  |-  ( A 
||  ( C  +  B )  ->  ( A  e.  ZZ  /\  ( C  +  B )  e.  ZZ ) )
109simprd 114 . . . . . 6  |-  ( A 
||  ( C  +  B )  ->  ( C  +  B )  e.  ZZ )
1110adantl 277 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  ( C  +  B )  e.  ZZ )
1211, 4zsubcld 9535 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  (
( C  +  B
)  -  C )  e.  ZZ )
138, 12eqeltrrd 2285 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  /\  A  ||  ( C  +  B
) )  ->  B  e.  ZZ )
1413ex 115 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  ( C  +  B )  ->  B  e.  ZZ ) )
15 dvdsadd2b 12266 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )
1615a1d 22 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( B  e.  RR  ->  ( A  ||  B  <->  A 
||  ( C  +  B ) ) ) )
17163exp 1205 . . . 4  |-  ( A  e.  ZZ  ->  ( B  e.  ZZ  ->  ( ( C  e.  ZZ  /\  A  ||  C )  ->  ( B  e.  RR  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) ) ) ) )
1817com24 87 . . 3  |-  ( A  e.  ZZ  ->  ( B  e.  RR  ->  ( ( C  e.  ZZ  /\  A  ||  C )  ->  ( B  e.  ZZ  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) ) ) ) )
19183imp 1196 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( B  e.  ZZ  ->  ( A  ||  B  <->  A 
||  ( C  +  B ) ) ) )
203, 14, 19pm5.21ndd 707 1  |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C ) )  -> 
( A  ||  B  <->  A 
||  ( C  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   RRcr 7959    + caddc 7963    - cmin 8278   ZZcz 9407    || cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-dvds 12214
This theorem is referenced by:  2lgsoddprmlem2  15698
  Copyright terms: Public domain W3C validator