ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundmen Unicode version

Theorem fundmen 6651
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypothesis
Ref Expression
fundmen.1  |-  F  e. 
_V
Assertion
Ref Expression
fundmen  |-  ( Fun 
F  ->  dom  F  ~~  F )

Proof of Theorem fundmen
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundmen.1 . . . 4  |-  F  e. 
_V
21dmex 4761 . . 3  |-  dom  F  e.  _V
32a1i 9 . 2  |-  ( Fun 
F  ->  dom  F  e. 
_V )
41a1i 9 . 2  |-  ( Fun 
F  ->  F  e.  _V )
5 funfvop 5484 . . 3  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  <. x ,  ( F `
 x ) >.  e.  F )
65ex 114 . 2  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  <. x ,  ( F `  x ) >.  e.  F
) )
7 funrel 5096 . . 3  |-  ( Fun 
F  ->  Rel  F )
8 elreldm 4723 . . . 4  |-  ( ( Rel  F  /\  y  e.  F )  ->  |^| |^| y  e.  dom  F )
98ex 114 . . 3  |-  ( Rel 
F  ->  ( y  e.  F  ->  |^| |^| y  e.  dom  F ) )
107, 9syl 14 . 2  |-  ( Fun 
F  ->  ( y  e.  F  ->  |^| |^| y  e.  dom  F ) )
11 df-rel 4504 . . . . . . . . 9  |-  ( Rel 
F  <->  F  C_  ( _V 
X.  _V ) )
127, 11sylib 121 . . . . . . . 8  |-  ( Fun 
F  ->  F  C_  ( _V  X.  _V ) )
1312sselda 3061 . . . . . . 7  |-  ( ( Fun  F  /\  y  e.  F )  ->  y  e.  ( _V  X.  _V ) )
14 elvv 4559 . . . . . . 7  |-  ( y  e.  ( _V  X.  _V )  <->  E. z E. w  y  =  <. z ,  w >. )
1513, 14sylib 121 . . . . . 6  |-  ( ( Fun  F  /\  y  e.  F )  ->  E. z E. w  y  =  <. z ,  w >. )
16 inteq 3738 . . . . . . . . . . . . . . . . 17  |-  ( y  =  <. z ,  w >.  ->  |^| y  =  |^| <.
z ,  w >. )
1716inteqd 3740 . . . . . . . . . . . . . . . 16  |-  ( y  =  <. z ,  w >.  ->  |^| |^| y  =  |^| |^|
<. z ,  w >. )
18 vex 2658 . . . . . . . . . . . . . . . . 17  |-  z  e. 
_V
19 vex 2658 . . . . . . . . . . . . . . . . 17  |-  w  e. 
_V
2018, 19op1stb 4357 . . . . . . . . . . . . . . . 16  |-  |^| |^| <. z ,  w >.  =  z
2117, 20syl6eq 2161 . . . . . . . . . . . . . . 15  |-  ( y  =  <. z ,  w >.  ->  |^| |^| y  =  z )
22 eqeq1 2119 . . . . . . . . . . . . . . 15  |-  ( x  =  |^| |^| y  ->  ( x  =  z  <->  |^| |^| y  =  z ) )
2321, 22syl5ibr 155 . . . . . . . . . . . . . 14  |-  ( x  =  |^| |^| y  ->  ( y  =  <. z ,  w >.  ->  x  =  z ) )
24 opeq1 3669 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  <. x ,  w >.  =  <. z ,  w >. )
2523, 24syl6 33 . . . . . . . . . . . . 13  |-  ( x  =  |^| |^| y  ->  ( y  =  <. z ,  w >.  ->  <. x ,  w >.  =  <. z ,  w >. )
)
2625imp 123 . . . . . . . . . . . 12  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  -> 
<. x ,  w >.  = 
<. z ,  w >. )
27 eqeq2 2122 . . . . . . . . . . . . . 14  |-  ( <.
x ,  w >.  = 
<. z ,  w >.  -> 
( y  =  <. x ,  w >.  <->  y  =  <. z ,  w >. ) )
2827biimprcd 159 . . . . . . . . . . . . 13  |-  ( y  =  <. z ,  w >.  ->  ( <. x ,  w >.  =  <. z ,  w >.  ->  y  =  <. x ,  w >. ) )
2928adantl 273 . . . . . . . . . . . 12  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  ->  ( <. x ,  w >.  =  <. z ,  w >.  ->  y  =  <. x ,  w >. )
)
3026, 29mpd 13 . . . . . . . . . . 11  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  ->  y  =  <. x ,  w >. )
3130ancoms 266 . . . . . . . . . 10  |-  ( ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y )  -> 
y  =  <. x ,  w >. )
3231adantl 273 . . . . . . . . 9  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  y  =  <. x ,  w >. )
3330eleq1d 2181 . . . . . . . . . . . . . . 15  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  ->  ( y  e.  F  <->  <.
x ,  w >.  e.  F ) )
3433adantl 273 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  (
x  =  |^| |^| y  /\  y  =  <. z ,  w >. )
)  ->  ( y  e.  F  <->  <. x ,  w >.  e.  F ) )
35 funopfv 5413 . . . . . . . . . . . . . . 15  |-  ( Fun 
F  ->  ( <. x ,  w >.  e.  F  ->  ( F `  x
)  =  w ) )
3635adantr 272 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  (
x  =  |^| |^| y  /\  y  =  <. z ,  w >. )
)  ->  ( <. x ,  w >.  e.  F  ->  ( F `  x
)  =  w ) )
3734, 36sylbid 149 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  (
x  =  |^| |^| y  /\  y  =  <. z ,  w >. )
)  ->  ( y  e.  F  ->  ( F `
 x )  =  w ) )
3837exp32 360 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( x  =  |^| |^| y  ->  (
y  =  <. z ,  w >.  ->  ( y  e.  F  ->  ( F `  x )  =  w ) ) ) )
3938com24 87 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( y  e.  F  ->  ( y  =  <. z ,  w >.  ->  ( x  = 
|^| |^| y  ->  ( F `  x )  =  w ) ) ) )
4039imp43 350 . . . . . . . . . 10  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  ( F `  x )  =  w )
4140opeq2d 3676 . . . . . . . . 9  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  <. x ,  ( F `  x )
>.  =  <. x ,  w >. )
4232, 41eqtr4d 2148 . . . . . . . 8  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  y  =  <. x ,  ( F `  x ) >. )
4342exp32 360 . . . . . . 7  |-  ( ( Fun  F  /\  y  e.  F )  ->  (
y  =  <. z ,  w >.  ->  ( x  =  |^| |^| y  ->  y  =  <. x ,  ( F `  x ) >. )
) )
4443exlimdvv 1849 . . . . . 6  |-  ( ( Fun  F  /\  y  e.  F )  ->  ( E. z E. w  y  =  <. z ,  w >.  ->  ( x  = 
|^| |^| y  ->  y  =  <. x ,  ( F `  x )
>. ) ) )
4515, 44mpd 13 . . . . 5  |-  ( ( Fun  F  /\  y  e.  F )  ->  (
x  =  |^| |^| y  ->  y  =  <. x ,  ( F `  x ) >. )
)
4645adantrl 467 . . . 4  |-  ( ( Fun  F  /\  (
x  e.  dom  F  /\  y  e.  F
) )  ->  (
x  =  |^| |^| y  ->  y  =  <. x ,  ( F `  x ) >. )
)
47 inteq 3738 . . . . . . . . 9  |-  ( y  =  <. x ,  ( F `  x )
>.  ->  |^| y  =  |^| <.
x ,  ( F `
 x ) >.
)
4847inteqd 3740 . . . . . . . 8  |-  ( y  =  <. x ,  ( F `  x )
>.  ->  |^| |^| y  =  |^| |^|
<. x ,  ( F `
 x ) >.
)
4948adantl 273 . . . . . . 7  |-  ( ( ( Fun  F  /\  x  e.  dom  F )  /\  y  =  <. x ,  ( F `  x ) >. )  ->  |^| |^| y  =  |^| |^|
<. x ,  ( F `
 x ) >.
)
50 vex 2658 . . . . . . . . 9  |-  x  e. 
_V
51 funfvex 5390 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
52 op1stbg 4358 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  ( F `  x )  e.  _V )  ->  |^| |^| <. x ,  ( F `  x )
>.  =  x )
5350, 51, 52sylancr 408 . . . . . . . 8  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  |^| |^| <. x ,  ( F `  x )
>.  =  x )
5453adantr 272 . . . . . . 7  |-  ( ( ( Fun  F  /\  x  e.  dom  F )  /\  y  =  <. x ,  ( F `  x ) >. )  ->  |^| |^| <. x ,  ( F `  x )
>.  =  x )
5549, 54eqtr2d 2146 . . . . . 6  |-  ( ( ( Fun  F  /\  x  e.  dom  F )  /\  y  =  <. x ,  ( F `  x ) >. )  ->  x  =  |^| |^| y
)
5655ex 114 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( y  =  <. x ,  ( F `  x ) >.  ->  x  =  |^| |^| y ) )
5756adantrr 468 . . . 4  |-  ( ( Fun  F  /\  (
x  e.  dom  F  /\  y  e.  F
) )  ->  (
y  =  <. x ,  ( F `  x ) >.  ->  x  =  |^| |^| y ) )
5846, 57impbid 128 . . 3  |-  ( ( Fun  F  /\  (
x  e.  dom  F  /\  y  e.  F
) )  ->  (
x  =  |^| |^| y  <->  y  =  <. x ,  ( F `  x )
>. ) )
5958ex 114 . 2  |-  ( Fun 
F  ->  ( (
x  e.  dom  F  /\  y  e.  F
)  ->  ( x  =  |^| |^| y  <->  y  =  <. x ,  ( F `
 x ) >.
) ) )
603, 4, 6, 10, 59en3d 6614 1  |-  ( Fun 
F  ->  dom  F  ~~  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1312   E.wex 1449    e. wcel 1461   _Vcvv 2655    C_ wss 3035   <.cop 3494   |^|cint 3735   class class class wbr 3893    X. cxp 4495   dom cdm 4497   Rel wrel 4502   Fun wfun 5073   ` cfv 5079    ~~ cen 6583
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-en 6586
This theorem is referenced by:  fundmeng  6652
  Copyright terms: Public domain W3C validator