ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundmen Unicode version

Theorem fundmen 6740
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 28-Jul-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypothesis
Ref Expression
fundmen.1  |-  F  e. 
_V
Assertion
Ref Expression
fundmen  |-  ( Fun 
F  ->  dom  F  ~~  F )

Proof of Theorem fundmen
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundmen.1 . . . 4  |-  F  e. 
_V
21dmex 4845 . . 3  |-  dom  F  e.  _V
32a1i 9 . 2  |-  ( Fun 
F  ->  dom  F  e. 
_V )
41a1i 9 . 2  |-  ( Fun 
F  ->  F  e.  _V )
5 funfvop 5572 . . 3  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  <. x ,  ( F `
 x ) >.  e.  F )
65ex 114 . 2  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  <. x ,  ( F `  x ) >.  e.  F
) )
7 funrel 5180 . . 3  |-  ( Fun 
F  ->  Rel  F )
8 elreldm 4805 . . . 4  |-  ( ( Rel  F  /\  y  e.  F )  ->  |^| |^| y  e.  dom  F )
98ex 114 . . 3  |-  ( Rel 
F  ->  ( y  e.  F  ->  |^| |^| y  e.  dom  F ) )
107, 9syl 14 . 2  |-  ( Fun 
F  ->  ( y  e.  F  ->  |^| |^| y  e.  dom  F ) )
11 df-rel 4586 . . . . . . . . 9  |-  ( Rel 
F  <->  F  C_  ( _V 
X.  _V ) )
127, 11sylib 121 . . . . . . . 8  |-  ( Fun 
F  ->  F  C_  ( _V  X.  _V ) )
1312sselda 3124 . . . . . . 7  |-  ( ( Fun  F  /\  y  e.  F )  ->  y  e.  ( _V  X.  _V ) )
14 elvv 4641 . . . . . . 7  |-  ( y  e.  ( _V  X.  _V )  <->  E. z E. w  y  =  <. z ,  w >. )
1513, 14sylib 121 . . . . . 6  |-  ( ( Fun  F  /\  y  e.  F )  ->  E. z E. w  y  =  <. z ,  w >. )
16 inteq 3806 . . . . . . . . . . . . . . . . 17  |-  ( y  =  <. z ,  w >.  ->  |^| y  =  |^| <.
z ,  w >. )
1716inteqd 3808 . . . . . . . . . . . . . . . 16  |-  ( y  =  <. z ,  w >.  ->  |^| |^| y  =  |^| |^|
<. z ,  w >. )
18 vex 2712 . . . . . . . . . . . . . . . . 17  |-  z  e. 
_V
19 vex 2712 . . . . . . . . . . . . . . . . 17  |-  w  e. 
_V
2018, 19op1stb 4432 . . . . . . . . . . . . . . . 16  |-  |^| |^| <. z ,  w >.  =  z
2117, 20eqtrdi 2203 . . . . . . . . . . . . . . 15  |-  ( y  =  <. z ,  w >.  ->  |^| |^| y  =  z )
22 eqeq1 2161 . . . . . . . . . . . . . . 15  |-  ( x  =  |^| |^| y  ->  ( x  =  z  <->  |^| |^| y  =  z ) )
2321, 22syl5ibr 155 . . . . . . . . . . . . . 14  |-  ( x  =  |^| |^| y  ->  ( y  =  <. z ,  w >.  ->  x  =  z ) )
24 opeq1 3737 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  <. x ,  w >.  =  <. z ,  w >. )
2523, 24syl6 33 . . . . . . . . . . . . 13  |-  ( x  =  |^| |^| y  ->  ( y  =  <. z ,  w >.  ->  <. x ,  w >.  =  <. z ,  w >. )
)
2625imp 123 . . . . . . . . . . . 12  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  -> 
<. x ,  w >.  = 
<. z ,  w >. )
27 eqeq2 2164 . . . . . . . . . . . . . 14  |-  ( <.
x ,  w >.  = 
<. z ,  w >.  -> 
( y  =  <. x ,  w >.  <->  y  =  <. z ,  w >. ) )
2827biimprcd 159 . . . . . . . . . . . . 13  |-  ( y  =  <. z ,  w >.  ->  ( <. x ,  w >.  =  <. z ,  w >.  ->  y  =  <. x ,  w >. ) )
2928adantl 275 . . . . . . . . . . . 12  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  ->  ( <. x ,  w >.  =  <. z ,  w >.  ->  y  =  <. x ,  w >. )
)
3026, 29mpd 13 . . . . . . . . . . 11  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  ->  y  =  <. x ,  w >. )
3130ancoms 266 . . . . . . . . . 10  |-  ( ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y )  -> 
y  =  <. x ,  w >. )
3231adantl 275 . . . . . . . . 9  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  y  =  <. x ,  w >. )
3330eleq1d 2223 . . . . . . . . . . . . . . 15  |-  ( ( x  =  |^| |^| y  /\  y  =  <. z ,  w >. )  ->  ( y  e.  F  <->  <.
x ,  w >.  e.  F ) )
3433adantl 275 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  (
x  =  |^| |^| y  /\  y  =  <. z ,  w >. )
)  ->  ( y  e.  F  <->  <. x ,  w >.  e.  F ) )
35 funopfv 5501 . . . . . . . . . . . . . . 15  |-  ( Fun 
F  ->  ( <. x ,  w >.  e.  F  ->  ( F `  x
)  =  w ) )
3635adantr 274 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  (
x  =  |^| |^| y  /\  y  =  <. z ,  w >. )
)  ->  ( <. x ,  w >.  e.  F  ->  ( F `  x
)  =  w ) )
3734, 36sylbid 149 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  (
x  =  |^| |^| y  /\  y  =  <. z ,  w >. )
)  ->  ( y  e.  F  ->  ( F `
 x )  =  w ) )
3837exp32 363 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( x  =  |^| |^| y  ->  (
y  =  <. z ,  w >.  ->  ( y  e.  F  ->  ( F `  x )  =  w ) ) ) )
3938com24 87 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( y  e.  F  ->  ( y  =  <. z ,  w >.  ->  ( x  = 
|^| |^| y  ->  ( F `  x )  =  w ) ) ) )
4039imp43 353 . . . . . . . . . 10  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  ( F `  x )  =  w )
4140opeq2d 3744 . . . . . . . . 9  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  <. x ,  ( F `  x )
>.  =  <. x ,  w >. )
4232, 41eqtr4d 2190 . . . . . . . 8  |-  ( ( ( Fun  F  /\  y  e.  F )  /\  ( y  =  <. z ,  w >.  /\  x  =  |^| |^| y ) )  ->  y  =  <. x ,  ( F `  x ) >. )
4342exp32 363 . . . . . . 7  |-  ( ( Fun  F  /\  y  e.  F )  ->  (
y  =  <. z ,  w >.  ->  ( x  =  |^| |^| y  ->  y  =  <. x ,  ( F `  x ) >. )
) )
4443exlimdvv 1874 . . . . . 6  |-  ( ( Fun  F  /\  y  e.  F )  ->  ( E. z E. w  y  =  <. z ,  w >.  ->  ( x  = 
|^| |^| y  ->  y  =  <. x ,  ( F `  x )
>. ) ) )
4515, 44mpd 13 . . . . 5  |-  ( ( Fun  F  /\  y  e.  F )  ->  (
x  =  |^| |^| y  ->  y  =  <. x ,  ( F `  x ) >. )
)
4645adantrl 470 . . . 4  |-  ( ( Fun  F  /\  (
x  e.  dom  F  /\  y  e.  F
) )  ->  (
x  =  |^| |^| y  ->  y  =  <. x ,  ( F `  x ) >. )
)
47 inteq 3806 . . . . . . . . 9  |-  ( y  =  <. x ,  ( F `  x )
>.  ->  |^| y  =  |^| <.
x ,  ( F `
 x ) >.
)
4847inteqd 3808 . . . . . . . 8  |-  ( y  =  <. x ,  ( F `  x )
>.  ->  |^| |^| y  =  |^| |^|
<. x ,  ( F `
 x ) >.
)
4948adantl 275 . . . . . . 7  |-  ( ( ( Fun  F  /\  x  e.  dom  F )  /\  y  =  <. x ,  ( F `  x ) >. )  ->  |^| |^| y  =  |^| |^|
<. x ,  ( F `
 x ) >.
)
50 vex 2712 . . . . . . . . 9  |-  x  e. 
_V
51 funfvex 5478 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
52 op1stbg 4433 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  ( F `  x )  e.  _V )  ->  |^| |^| <. x ,  ( F `  x )
>.  =  x )
5350, 51, 52sylancr 411 . . . . . . . 8  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  |^| |^| <. x ,  ( F `  x )
>.  =  x )
5453adantr 274 . . . . . . 7  |-  ( ( ( Fun  F  /\  x  e.  dom  F )  /\  y  =  <. x ,  ( F `  x ) >. )  ->  |^| |^| <. x ,  ( F `  x )
>.  =  x )
5549, 54eqtr2d 2188 . . . . . 6  |-  ( ( ( Fun  F  /\  x  e.  dom  F )  /\  y  =  <. x ,  ( F `  x ) >. )  ->  x  =  |^| |^| y
)
5655ex 114 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( y  =  <. x ,  ( F `  x ) >.  ->  x  =  |^| |^| y ) )
5756adantrr 471 . . . 4  |-  ( ( Fun  F  /\  (
x  e.  dom  F  /\  y  e.  F
) )  ->  (
y  =  <. x ,  ( F `  x ) >.  ->  x  =  |^| |^| y ) )
5846, 57impbid 128 . . 3  |-  ( ( Fun  F  /\  (
x  e.  dom  F  /\  y  e.  F
) )  ->  (
x  =  |^| |^| y  <->  y  =  <. x ,  ( F `  x )
>. ) )
5958ex 114 . 2  |-  ( Fun 
F  ->  ( (
x  e.  dom  F  /\  y  e.  F
)  ->  ( x  =  |^| |^| y  <->  y  =  <. x ,  ( F `
 x ) >.
) ) )
603, 4, 6, 10, 59en3d 6703 1  |-  ( Fun 
F  ->  dom  F  ~~  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 2125   _Vcvv 2709    C_ wss 3098   <.cop 3559   |^|cint 3803   class class class wbr 3961    X. cxp 4577   dom cdm 4579   Rel wrel 4584   Fun wfun 5157   ` cfv 5163    ~~ cen 6672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-en 6675
This theorem is referenced by:  fundmeng  6741
  Copyright terms: Public domain W3C validator