ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbie Unicode version

Theorem csbie 3090
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
csbie.1  |-  A  e. 
_V
csbie.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
csbie  |-  [_ A  /  x ]_ B  =  C
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem csbie
StepHypRef Expression
1 csbie.1 . 2  |-  A  e. 
_V
2 nfcv 2308 . 2  |-  F/_ x C
3 csbie.2 . 2  |-  ( x  =  A  ->  B  =  C )
41, 2, 3csbief 3089 1  |-  [_ A  /  x ]_ B  =  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  fsumcnv  11378  fisum0diag2  11388  fprodcnv  11566
  Copyright terms: Public domain W3C validator