ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbie Unicode version

Theorem csbie 3138
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
csbie.1  |-  A  e. 
_V
csbie.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
csbie  |-  [_ A  /  x ]_ B  =  C
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem csbie
StepHypRef Expression
1 csbie.1 . 2  |-  A  e. 
_V
2 nfcv 2347 . 2  |-  F/_ x C
3 csbie.2 . 2  |-  ( x  =  A  ->  B  =  C )
41, 2, 3csbief 3137 1  |-  [_ A  /  x ]_ B  =  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   _Vcvv 2771   [_csb 3092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-sbc 2998  df-csb 3093
This theorem is referenced by:  fsumcnv  11667  fisum0diag2  11677  fprodcnv  11855
  Copyright terms: Public domain W3C validator