ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbie Unicode version

Theorem csbie 3130
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.)
Hypotheses
Ref Expression
csbie.1  |-  A  e. 
_V
csbie.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
csbie  |-  [_ A  /  x ]_ B  =  C
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem csbie
StepHypRef Expression
1 csbie.1 . 2  |-  A  e. 
_V
2 nfcv 2339 . 2  |-  F/_ x C
3 csbie.2 . 2  |-  ( x  =  A  ->  B  =  C )
41, 2, 3csbief 3129 1  |-  [_ A  /  x ]_ B  =  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   [_csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  fsumcnv  11602  fisum0diag2  11612  fprodcnv  11790
  Copyright terms: Public domain W3C validator