ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisum0diag2 Unicode version

Theorem fisum0diag2 11216
Description: Two ways to express "the sum of  A ( j ,  k ) over the triangular region  0  <_  j, 
0  <_  k,  j  +  k  <_  N." (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
fsum0diag2.1  |-  ( x  =  k  ->  B  =  A )
fsum0diag2.2  |-  ( x  =  ( k  -  j )  ->  B  =  C )
fsum0diag2.3  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) ) )  ->  A  e.  CC )
fisum0diag2.n  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
fisum0diag2  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) ) A  =  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k ) C )
Distinct variable groups:    j, k, x, N    ph, j, k    B, k    x, A    x, C
Allowed substitution hints:    ph( x)    A( j,
k)    B( x, j)    C( j, k)

Proof of Theorem fisum0diag2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 fznn0sub2 9905 . . . . . . 7  |-  ( n  e.  ( 0 ... ( N  -  j
) )  ->  (
( N  -  j
)  -  n )  e.  ( 0 ... ( N  -  j
) ) )
21ad2antll 482 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  -> 
( ( N  -  j )  -  n
)  e.  ( 0 ... ( N  -  j ) ) )
3 fsum0diag2.3 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) ) )  ->  A  e.  CC )
43expr 372 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  (
k  e.  ( 0 ... ( N  -  j ) )  ->  A  e.  CC )
)
54ralrimiv 2504 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  A. k  e.  ( 0 ... ( N  -  j )
) A  e.  CC )
6 fsum0diag2.1 . . . . . . . . . 10  |-  ( x  =  k  ->  B  =  A )
76eleq1d 2208 . . . . . . . . 9  |-  ( x  =  k  ->  ( B  e.  CC  <->  A  e.  CC ) )
87cbvralv 2654 . . . . . . . 8  |-  ( A. x  e.  ( 0 ... ( N  -  j ) ) B  e.  CC  <->  A. k  e.  ( 0 ... ( N  -  j )
) A  e.  CC )
95, 8sylibr 133 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  A. x  e.  ( 0 ... ( N  -  j )
) B  e.  CC )
109adantrr 470 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  ->  A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC )
11 nfcsb1v 3035 . . . . . . . 8  |-  F/_ x [_ ( ( N  -  j )  -  n
)  /  x ]_ B
1211nfel1 2292 . . . . . . 7  |-  F/ x [_ ( ( N  -  j )  -  n
)  /  x ]_ B  e.  CC
13 csbeq1a 3012 . . . . . . . 8  |-  ( x  =  ( ( N  -  j )  -  n )  ->  B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
1413eleq1d 2208 . . . . . . 7  |-  ( x  =  ( ( N  -  j )  -  n )  ->  ( B  e.  CC  <->  [_ ( ( N  -  j )  -  n )  /  x ]_ B  e.  CC ) )
1512, 14rspc 2783 . . . . . 6  |-  ( ( ( N  -  j
)  -  n )  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ (
( N  -  j
)  -  n )  /  x ]_ B  e.  CC ) )
162, 10, 15sylc 62 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  ->  [_ ( ( N  -  j )  -  n
)  /  x ]_ B  e.  CC )
17 fisum0diag2.n . . . . 5  |-  ( ph  ->  N  e.  ZZ )
1816, 17fisum0diag 11210 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ n  e.  (
0 ... ( N  -  j ) ) [_ ( ( N  -  j )  -  n
)  /  x ]_ B  =  sum_ n  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... ( N  -  n ) )
[_ ( ( N  -  j )  -  n )  /  x ]_ B )
19 0zd 9066 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
2017adantr 274 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  N  e.  ZZ )
21 elfzelz 9806 . . . . . . . . 9  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ZZ )
2221adantl 275 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  j  e.  ZZ )
2320, 22zsubcld 9178 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  ( N  -  j )  e.  ZZ )
24 nfcsb1v 3035 . . . . . . . . . 10  |-  F/_ x [_ k  /  x ]_ B
2524nfel1 2292 . . . . . . . . 9  |-  F/ x [_ k  /  x ]_ B  e.  CC
26 csbeq1a 3012 . . . . . . . . . 10  |-  ( x  =  k  ->  B  =  [_ k  /  x ]_ B )
2726eleq1d 2208 . . . . . . . . 9  |-  ( x  =  k  ->  ( B  e.  CC  <->  [_ k  /  x ]_ B  e.  CC ) )
2825, 27rspc 2783 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ k  /  x ]_ B  e.  CC ) )
299, 28mpan9 279 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  k  e.  ( 0 ... ( N  -  j )
) )  ->  [_ k  /  x ]_ B  e.  CC )
30 csbeq1 3006 . . . . . . 7  |-  ( k  =  ( ( 0  +  ( N  -  j ) )  -  n )  ->  [_ k  /  x ]_ B  = 
[_ ( ( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B )
3119, 23, 29, 30fisumrev2 11215 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B
)
32 elfz3nn0 9895 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... N )  ->  N  e.  NN0 )
3332ad2antlr 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  N  e.  NN0 )
3421ad2antlr 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  j  e.  ZZ )
35 nn0cn 8987 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  CC )
36 zcn 9059 . . . . . . . . . . . 12  |-  ( j  e.  ZZ  ->  j  e.  CC )
37 subcl 7961 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  j  e.  CC )  ->  ( N  -  j
)  e.  CC )
3835, 36, 37syl2an 287 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  j  e.  ZZ )  ->  ( N  -  j
)  e.  CC )
3933, 34, 38syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  ( N  -  j )  e.  CC )
4039addid2d 7912 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  (
0  +  ( N  -  j ) )  =  ( N  -  j ) )
4140oveq1d 5789 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  (
( 0  +  ( N  -  j ) )  -  n )  =  ( ( N  -  j )  -  n ) )
4241csbeq1d 3010 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  [_ (
( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
4342sumeq2dv 11137 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ n  e.  ( 0 ... ( N  -  j )
) [_ ( ( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
4431, 43eqtrd 2172 . . . . 5  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
4544sumeq2dv 11137 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ j  e.  ( 0 ... N ) sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
46 elfz3nn0 9895 . . . . . . . . . 10  |-  ( n  e.  ( 0 ... N )  ->  N  e.  NN0 )
4746adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  N  e.  NN0 )
48 addid2 7901 . . . . . . . . 9  |-  ( N  e.  CC  ->  (
0  +  N )  =  N )
4947, 35, 483syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
0  +  N )  =  N )
5049oveq1d 5789 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
( 0  +  N
)  -  n )  =  ( N  -  n ) )
5150oveq2d 5790 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
0 ... ( ( 0  +  N )  -  n ) )  =  ( 0 ... ( N  -  n )
) )
5250oveq1d 5789 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  n )  -  j ) )
5352adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  n )  -  j ) )
5446ad2antlr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  N  e.  NN0 )
55 elfzelz 9806 . . . . . . . . . 10  |-  ( n  e.  ( 0 ... N )  ->  n  e.  ZZ )
5655ad2antlr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  n  e.  ZZ )
57 elfzelz 9806 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... ( N  -  n
) )  ->  j  e.  ZZ )
5857adantl 275 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  j  e.  ZZ )
59 zcn 9059 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  n  e.  CC )
60 sub32 7996 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  n  e.  CC  /\  j  e.  CC )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6135, 59, 36, 60syl3an 1258 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ZZ  /\  j  e.  ZZ )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6254, 56, 58, 61syl3anc 1216 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6353, 62eqtrd 2172 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6463csbeq1d 3010 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  [_ (
( ( 0  +  N )  -  n
)  -  j )  /  x ]_ B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
6551, 64sumeq12rdv 11142 . . . . 5  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... ( N  -  n ) ) [_ ( ( N  -  j )  -  n
)  /  x ]_ B )
6665sumeq2dv 11137 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
0 ... N ) sum_ j  e.  ( 0 ... ( ( 0  +  N )  -  n ) ) [_ ( ( ( 0  +  N )  -  n )  -  j
)  /  x ]_ B  =  sum_ n  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... ( N  -  n ) )
[_ ( ( N  -  j )  -  n )  /  x ]_ B )
6718, 45, 663eqtr4d 2182 . . 3  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B )
68 0zd 9066 . . . 4  |-  ( ph  ->  0  e.  ZZ )
69 0zd 9066 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
70 elfzelz 9806 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
7170adantl 275 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
7269, 71fzfigd 10204 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
0 ... k )  e. 
Fin )
73 elfzuz3 9803 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... k )  ->  k  e.  ( ZZ>= `  j )
)
7473adantl 275 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ( ZZ>= `  j )
)
75 elfzuz3 9803 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  k )
)
7675adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  N  e.  ( ZZ>= `  k )
)
7776adantr 274 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  N  e.  ( ZZ>= `  k )
)
78 elfzuzb 9800 . . . . . . . . 9  |-  ( k  e.  ( j ... N )  <->  ( k  e.  ( ZZ>= `  j )  /\  N  e.  ( ZZ>=
`  k ) ) )
7974, 77, 78sylanbrc 413 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ( j ... N
) )
80 elfzelz 9806 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... k )  ->  j  e.  ZZ )
8180adantl 275 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  ZZ )
8217ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  N  e.  ZZ )
8370ad2antlr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ZZ )
84 fzsubel 9840 . . . . . . . . 9  |-  ( ( ( j  e.  ZZ  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( k  e.  ( j ... N )  <-> 
( k  -  j
)  e.  ( ( j  -  j ) ... ( N  -  j ) ) ) )
8581, 82, 83, 81, 84syl22anc 1217 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  e.  ( j ... N )  <->  ( k  -  j )  e.  ( ( j  -  j ) ... ( N  -  j )
) ) )
8679, 85mpbid 146 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  ( ( j  -  j ) ... ( N  -  j
) ) )
87 subid 7981 . . . . . . . . 9  |-  ( j  e.  CC  ->  (
j  -  j )  =  0 )
8881, 36, 873syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
j  -  j )  =  0 )
8988oveq1d 5789 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
( j  -  j
) ... ( N  -  j ) )  =  ( 0 ... ( N  -  j )
) )
9086, 89eleqtrd 2218 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  ( 0 ... ( N  -  j
) ) )
91 simpll 518 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  ph )
92 fzss2 9844 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  k
)  ->  ( 0 ... k )  C_  ( 0 ... N
) )
9376, 92syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
0 ... k )  C_  ( 0 ... N
) )
9493sselda 3097 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  ( 0 ... N
) )
9591, 94, 9syl2anc 408 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  A. x  e.  ( 0 ... ( N  -  j )
) B  e.  CC )
96 nfcsb1v 3035 . . . . . . . 8  |-  F/_ x [_ ( k  -  j
)  /  x ]_ B
9796nfel1 2292 . . . . . . 7  |-  F/ x [_ ( k  -  j
)  /  x ]_ B  e.  CC
98 csbeq1a 3012 . . . . . . . 8  |-  ( x  =  ( k  -  j )  ->  B  =  [_ ( k  -  j )  /  x ]_ B )
9998eleq1d 2208 . . . . . . 7  |-  ( x  =  ( k  -  j )  ->  ( B  e.  CC  <->  [_ ( k  -  j )  /  x ]_ B  e.  CC ) )
10097, 99rspc 2783 . . . . . 6  |-  ( ( k  -  j )  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ (
k  -  j )  /  x ]_ B  e.  CC ) )
10190, 95, 100sylc 62 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  [_ (
k  -  j )  /  x ]_ B  e.  CC )
10272, 101fsumcl 11169 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  e.  CC )
103 oveq2 5782 . . . . 5  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  (
0 ... k )  =  ( 0 ... (
( 0  +  N
)  -  n ) ) )
104 oveq1 5781 . . . . . . 7  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  (
k  -  j )  =  ( ( ( 0  +  N )  -  n )  -  j ) )
105104csbeq1d 3010 . . . . . 6  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  [_ (
k  -  j )  /  x ]_ B  =  [_ ( ( ( 0  +  N )  -  n )  -  j )  /  x ]_ B )
106105adantr 274 . . . . 5  |-  ( ( k  =  ( ( 0  +  N )  -  n )  /\  j  e.  ( 0 ... k ) )  ->  [_ ( k  -  j )  /  x ]_ B  =  [_ (
( ( 0  +  N )  -  n
)  -  j )  /  x ]_ B
)
107103, 106sumeq12dv 11141 . . . 4  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... ( ( 0  +  N )  -  n ) ) [_ ( ( ( 0  +  N )  -  n )  -  j
)  /  x ]_ B )
10868, 17, 102, 107fisumrev2 11215 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N )
sum_ j  e.  ( 0 ... k )
[_ ( k  -  j )  /  x ]_ B  =  sum_ n  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B )
10967, 108eqtr4d 2175 . 2  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ k  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... k ) [_ ( k  -  j
)  /  x ]_ B )
110 vex 2689 . . . . . 6  |-  k  e. 
_V
111110, 6csbie 3045 . . . . 5  |-  [_ k  /  x ]_ B  =  A
112111a1i 9 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  [_ k  /  x ]_ B  =  A
)
113112sumeq2dv 11137 . . 3  |-  ( j  e.  ( 0 ... N )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ k  e.  ( 0 ... ( N  -  j ) ) A )
114113sumeq2i 11133 . 2  |-  sum_ j  e.  ( 0 ... N
) sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ j  e.  ( 0 ... N ) sum_ k  e.  ( 0 ... ( N  -  j ) ) A
11570adantr 274 . . . . . 6  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  k  e.  ZZ )
11680adantl 275 . . . . . 6  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  j  e.  ZZ )
117115, 116zsubcld 9178 . . . . 5  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  ( k  -  j )  e.  ZZ )
118 fsum0diag2.2 . . . . . 6  |-  ( x  =  ( k  -  j )  ->  B  =  C )
119118adantl 275 . . . . 5  |-  ( ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  /\  x  =  ( k  -  j
) )  ->  B  =  C )
120117, 119csbied 3046 . . . 4  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  [_ ( k  -  j )  /  x ]_ B  =  C
)
121120sumeq2dv 11137 . . 3  |-  ( k  e.  ( 0 ... N )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... k ) C )
122121sumeq2i 11133 . 2  |-  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k )
[_ ( k  -  j )  /  x ]_ B  =  sum_ k  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... k ) C
123109, 114, 1223eqtr3g 2195 1  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) ) A  =  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k ) C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   [_csb 3003    C_ wss 3071   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620    + caddc 7623    - cmin 7933   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  mertensabs  11306
  Copyright terms: Public domain W3C validator