| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fisum0diag2 | Unicode version | ||
| Description: Two ways to express
"the sum of |
| Ref | Expression |
|---|---|
| fsum0diag2.1 |
|
| fsum0diag2.2 |
|
| fsum0diag2.3 |
|
| fisum0diag2.n |
|
| Ref | Expression |
|---|---|
| fisum0diag2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fznn0sub2 10220 |
. . . . . . 7
| |
| 2 | 1 | ad2antll 491 |
. . . . . 6
|
| 3 | fsum0diag2.3 |
. . . . . . . . . 10
| |
| 4 | 3 | expr 375 |
. . . . . . . . 9
|
| 5 | 4 | ralrimiv 2569 |
. . . . . . . 8
|
| 6 | fsum0diag2.1 |
. . . . . . . . . 10
| |
| 7 | 6 | eleq1d 2265 |
. . . . . . . . 9
|
| 8 | 7 | cbvralv 2729 |
. . . . . . . 8
|
| 9 | 5, 8 | sylibr 134 |
. . . . . . 7
|
| 10 | 9 | adantrr 479 |
. . . . . 6
|
| 11 | nfcsb1v 3117 |
. . . . . . . 8
| |
| 12 | 11 | nfel1 2350 |
. . . . . . 7
|
| 13 | csbeq1a 3093 |
. . . . . . . 8
| |
| 14 | 13 | eleq1d 2265 |
. . . . . . 7
|
| 15 | 12, 14 | rspc 2862 |
. . . . . 6
|
| 16 | 2, 10, 15 | sylc 62 |
. . . . 5
|
| 17 | fisum0diag2.n |
. . . . 5
| |
| 18 | 16, 17 | fisum0diag 11623 |
. . . 4
|
| 19 | 0zd 9355 |
. . . . . . 7
| |
| 20 | 17 | adantr 276 |
. . . . . . . 8
|
| 21 | elfzelz 10117 |
. . . . . . . . 9
| |
| 22 | 21 | adantl 277 |
. . . . . . . 8
|
| 23 | 20, 22 | zsubcld 9470 |
. . . . . . 7
|
| 24 | nfcsb1v 3117 |
. . . . . . . . . 10
| |
| 25 | 24 | nfel1 2350 |
. . . . . . . . 9
|
| 26 | csbeq1a 3093 |
. . . . . . . . . 10
| |
| 27 | 26 | eleq1d 2265 |
. . . . . . . . 9
|
| 28 | 25, 27 | rspc 2862 |
. . . . . . . 8
|
| 29 | 9, 28 | mpan9 281 |
. . . . . . 7
|
| 30 | csbeq1 3087 |
. . . . . . 7
| |
| 31 | 19, 23, 29, 30 | fisumrev2 11628 |
. . . . . 6
|
| 32 | elfz3nn0 10207 |
. . . . . . . . . . . 12
| |
| 33 | 32 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 34 | 21 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 35 | nn0cn 9276 |
. . . . . . . . . . . 12
| |
| 36 | zcn 9348 |
. . . . . . . . . . . 12
| |
| 37 | subcl 8242 |
. . . . . . . . . . . 12
| |
| 38 | 35, 36, 37 | syl2an 289 |
. . . . . . . . . . 11
|
| 39 | 33, 34, 38 | syl2anc 411 |
. . . . . . . . . 10
|
| 40 | 39 | addlidd 8193 |
. . . . . . . . 9
|
| 41 | 40 | oveq1d 5940 |
. . . . . . . 8
|
| 42 | 41 | csbeq1d 3091 |
. . . . . . 7
|
| 43 | 42 | sumeq2dv 11550 |
. . . . . 6
|
| 44 | 31, 43 | eqtrd 2229 |
. . . . 5
|
| 45 | 44 | sumeq2dv 11550 |
. . . 4
|
| 46 | elfz3nn0 10207 |
. . . . . . . . . 10
| |
| 47 | 46 | adantl 277 |
. . . . . . . . 9
|
| 48 | addlid 8182 |
. . . . . . . . 9
| |
| 49 | 47, 35, 48 | 3syl 17 |
. . . . . . . 8
|
| 50 | 49 | oveq1d 5940 |
. . . . . . 7
|
| 51 | 50 | oveq2d 5941 |
. . . . . 6
|
| 52 | 50 | oveq1d 5940 |
. . . . . . . . 9
|
| 53 | 52 | adantr 276 |
. . . . . . . 8
|
| 54 | 46 | ad2antlr 489 |
. . . . . . . . 9
|
| 55 | elfzelz 10117 |
. . . . . . . . . 10
| |
| 56 | 55 | ad2antlr 489 |
. . . . . . . . 9
|
| 57 | elfzelz 10117 |
. . . . . . . . . 10
| |
| 58 | 57 | adantl 277 |
. . . . . . . . 9
|
| 59 | zcn 9348 |
. . . . . . . . . 10
| |
| 60 | sub32 8277 |
. . . . . . . . . 10
| |
| 61 | 35, 59, 36, 60 | syl3an 1291 |
. . . . . . . . 9
|
| 62 | 54, 56, 58, 61 | syl3anc 1249 |
. . . . . . . 8
|
| 63 | 53, 62 | eqtrd 2229 |
. . . . . . 7
|
| 64 | 63 | csbeq1d 3091 |
. . . . . 6
|
| 65 | 51, 64 | sumeq12rdv 11555 |
. . . . 5
|
| 66 | 65 | sumeq2dv 11550 |
. . . 4
|
| 67 | 18, 45, 66 | 3eqtr4d 2239 |
. . 3
|
| 68 | 0zd 9355 |
. . . 4
| |
| 69 | 0zd 9355 |
. . . . . 6
| |
| 70 | elfzelz 10117 |
. . . . . . 7
| |
| 71 | 70 | adantl 277 |
. . . . . 6
|
| 72 | 69, 71 | fzfigd 10540 |
. . . . 5
|
| 73 | elfzuz3 10114 |
. . . . . . . . . 10
| |
| 74 | 73 | adantl 277 |
. . . . . . . . 9
|
| 75 | elfzuz3 10114 |
. . . . . . . . . . 11
| |
| 76 | 75 | adantl 277 |
. . . . . . . . . 10
|
| 77 | 76 | adantr 276 |
. . . . . . . . 9
|
| 78 | elfzuzb 10111 |
. . . . . . . . 9
| |
| 79 | 74, 77, 78 | sylanbrc 417 |
. . . . . . . 8
|
| 80 | elfzelz 10117 |
. . . . . . . . . 10
| |
| 81 | 80 | adantl 277 |
. . . . . . . . 9
|
| 82 | 17 | ad2antrr 488 |
. . . . . . . . 9
|
| 83 | 70 | ad2antlr 489 |
. . . . . . . . 9
|
| 84 | fzsubel 10152 |
. . . . . . . . 9
| |
| 85 | 81, 82, 83, 81, 84 | syl22anc 1250 |
. . . . . . . 8
|
| 86 | 79, 85 | mpbid 147 |
. . . . . . 7
|
| 87 | subid 8262 |
. . . . . . . . 9
| |
| 88 | 81, 36, 87 | 3syl 17 |
. . . . . . . 8
|
| 89 | 88 | oveq1d 5940 |
. . . . . . 7
|
| 90 | 86, 89 | eleqtrd 2275 |
. . . . . 6
|
| 91 | simpll 527 |
. . . . . . 7
| |
| 92 | fzss2 10156 |
. . . . . . . . 9
| |
| 93 | 76, 92 | syl 14 |
. . . . . . . 8
|
| 94 | 93 | sselda 3184 |
. . . . . . 7
|
| 95 | 91, 94, 9 | syl2anc 411 |
. . . . . 6
|
| 96 | nfcsb1v 3117 |
. . . . . . . 8
| |
| 97 | 96 | nfel1 2350 |
. . . . . . 7
|
| 98 | csbeq1a 3093 |
. . . . . . . 8
| |
| 99 | 98 | eleq1d 2265 |
. . . . . . 7
|
| 100 | 97, 99 | rspc 2862 |
. . . . . 6
|
| 101 | 90, 95, 100 | sylc 62 |
. . . . 5
|
| 102 | 72, 101 | fsumcl 11582 |
. . . 4
|
| 103 | oveq2 5933 |
. . . . 5
| |
| 104 | oveq1 5932 |
. . . . . . 7
| |
| 105 | 104 | csbeq1d 3091 |
. . . . . 6
|
| 106 | 105 | adantr 276 |
. . . . 5
|
| 107 | 103, 106 | sumeq12dv 11554 |
. . . 4
|
| 108 | 68, 17, 102, 107 | fisumrev2 11628 |
. . 3
|
| 109 | 67, 108 | eqtr4d 2232 |
. 2
|
| 110 | vex 2766 |
. . . . . 6
| |
| 111 | 110, 6 | csbie 3130 |
. . . . 5
|
| 112 | 111 | a1i 9 |
. . . 4
|
| 113 | 112 | sumeq2dv 11550 |
. . 3
|
| 114 | 113 | sumeq2i 11546 |
. 2
|
| 115 | 70 | adantr 276 |
. . . . . 6
|
| 116 | 80 | adantl 277 |
. . . . . 6
|
| 117 | 115, 116 | zsubcld 9470 |
. . . . 5
|
| 118 | fsum0diag2.2 |
. . . . . 6
| |
| 119 | 118 | adantl 277 |
. . . . 5
|
| 120 | 117, 119 | csbied 3131 |
. . . 4
|
| 121 | 120 | sumeq2dv 11550 |
. . 3
|
| 122 | 121 | sumeq2i 11546 |
. 2
|
| 123 | 109, 114, 122 | 3eqtr3g 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 |
| This theorem is referenced by: mertensabs 11719 plymullem1 15068 |
| Copyright terms: Public domain | W3C validator |