ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisum0diag2 Unicode version

Theorem fisum0diag2 11388
Description: Two ways to express "the sum of  A ( j ,  k ) over the triangular region  0  <_  j, 
0  <_  k,  j  +  k  <_  N". (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
fsum0diag2.1  |-  ( x  =  k  ->  B  =  A )
fsum0diag2.2  |-  ( x  =  ( k  -  j )  ->  B  =  C )
fsum0diag2.3  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) ) )  ->  A  e.  CC )
fisum0diag2.n  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
fisum0diag2  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) ) A  =  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k ) C )
Distinct variable groups:    j, k, x, N    ph, j, k    B, k    x, A    x, C
Allowed substitution hints:    ph( x)    A( j,
k)    B( x, j)    C( j, k)

Proof of Theorem fisum0diag2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 fznn0sub2 10063 . . . . . . 7  |-  ( n  e.  ( 0 ... ( N  -  j
) )  ->  (
( N  -  j
)  -  n )  e.  ( 0 ... ( N  -  j
) ) )
21ad2antll 483 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  -> 
( ( N  -  j )  -  n
)  e.  ( 0 ... ( N  -  j ) ) )
3 fsum0diag2.3 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) ) )  ->  A  e.  CC )
43expr 373 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  (
k  e.  ( 0 ... ( N  -  j ) )  ->  A  e.  CC )
)
54ralrimiv 2538 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  A. k  e.  ( 0 ... ( N  -  j )
) A  e.  CC )
6 fsum0diag2.1 . . . . . . . . . 10  |-  ( x  =  k  ->  B  =  A )
76eleq1d 2235 . . . . . . . . 9  |-  ( x  =  k  ->  ( B  e.  CC  <->  A  e.  CC ) )
87cbvralv 2692 . . . . . . . 8  |-  ( A. x  e.  ( 0 ... ( N  -  j ) ) B  e.  CC  <->  A. k  e.  ( 0 ... ( N  -  j )
) A  e.  CC )
95, 8sylibr 133 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  A. x  e.  ( 0 ... ( N  -  j )
) B  e.  CC )
109adantrr 471 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  ->  A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC )
11 nfcsb1v 3078 . . . . . . . 8  |-  F/_ x [_ ( ( N  -  j )  -  n
)  /  x ]_ B
1211nfel1 2319 . . . . . . 7  |-  F/ x [_ ( ( N  -  j )  -  n
)  /  x ]_ B  e.  CC
13 csbeq1a 3054 . . . . . . . 8  |-  ( x  =  ( ( N  -  j )  -  n )  ->  B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
1413eleq1d 2235 . . . . . . 7  |-  ( x  =  ( ( N  -  j )  -  n )  ->  ( B  e.  CC  <->  [_ ( ( N  -  j )  -  n )  /  x ]_ B  e.  CC ) )
1512, 14rspc 2824 . . . . . 6  |-  ( ( ( N  -  j
)  -  n )  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ (
( N  -  j
)  -  n )  /  x ]_ B  e.  CC ) )
162, 10, 15sylc 62 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  ->  [_ ( ( N  -  j )  -  n
)  /  x ]_ B  e.  CC )
17 fisum0diag2.n . . . . 5  |-  ( ph  ->  N  e.  ZZ )
1816, 17fisum0diag 11382 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ n  e.  (
0 ... ( N  -  j ) ) [_ ( ( N  -  j )  -  n
)  /  x ]_ B  =  sum_ n  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... ( N  -  n ) )
[_ ( ( N  -  j )  -  n )  /  x ]_ B )
19 0zd 9203 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
2017adantr 274 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  N  e.  ZZ )
21 elfzelz 9960 . . . . . . . . 9  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ZZ )
2221adantl 275 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  j  e.  ZZ )
2320, 22zsubcld 9318 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  ( N  -  j )  e.  ZZ )
24 nfcsb1v 3078 . . . . . . . . . 10  |-  F/_ x [_ k  /  x ]_ B
2524nfel1 2319 . . . . . . . . 9  |-  F/ x [_ k  /  x ]_ B  e.  CC
26 csbeq1a 3054 . . . . . . . . . 10  |-  ( x  =  k  ->  B  =  [_ k  /  x ]_ B )
2726eleq1d 2235 . . . . . . . . 9  |-  ( x  =  k  ->  ( B  e.  CC  <->  [_ k  /  x ]_ B  e.  CC ) )
2825, 27rspc 2824 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ k  /  x ]_ B  e.  CC ) )
299, 28mpan9 279 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  k  e.  ( 0 ... ( N  -  j )
) )  ->  [_ k  /  x ]_ B  e.  CC )
30 csbeq1 3048 . . . . . . 7  |-  ( k  =  ( ( 0  +  ( N  -  j ) )  -  n )  ->  [_ k  /  x ]_ B  = 
[_ ( ( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B )
3119, 23, 29, 30fisumrev2 11387 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B
)
32 elfz3nn0 10050 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... N )  ->  N  e.  NN0 )
3332ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  N  e.  NN0 )
3421ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  j  e.  ZZ )
35 nn0cn 9124 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  CC )
36 zcn 9196 . . . . . . . . . . . 12  |-  ( j  e.  ZZ  ->  j  e.  CC )
37 subcl 8097 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  j  e.  CC )  ->  ( N  -  j
)  e.  CC )
3835, 36, 37syl2an 287 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  j  e.  ZZ )  ->  ( N  -  j
)  e.  CC )
3933, 34, 38syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  ( N  -  j )  e.  CC )
4039addid2d 8048 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  (
0  +  ( N  -  j ) )  =  ( N  -  j ) )
4140oveq1d 5857 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  (
( 0  +  ( N  -  j ) )  -  n )  =  ( ( N  -  j )  -  n ) )
4241csbeq1d 3052 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  [_ (
( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
4342sumeq2dv 11309 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ n  e.  ( 0 ... ( N  -  j )
) [_ ( ( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
4431, 43eqtrd 2198 . . . . 5  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
4544sumeq2dv 11309 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ j  e.  ( 0 ... N ) sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
46 elfz3nn0 10050 . . . . . . . . . 10  |-  ( n  e.  ( 0 ... N )  ->  N  e.  NN0 )
4746adantl 275 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  N  e.  NN0 )
48 addid2 8037 . . . . . . . . 9  |-  ( N  e.  CC  ->  (
0  +  N )  =  N )
4947, 35, 483syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
0  +  N )  =  N )
5049oveq1d 5857 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
( 0  +  N
)  -  n )  =  ( N  -  n ) )
5150oveq2d 5858 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
0 ... ( ( 0  +  N )  -  n ) )  =  ( 0 ... ( N  -  n )
) )
5250oveq1d 5857 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  n )  -  j ) )
5352adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  n )  -  j ) )
5446ad2antlr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  N  e.  NN0 )
55 elfzelz 9960 . . . . . . . . . 10  |-  ( n  e.  ( 0 ... N )  ->  n  e.  ZZ )
5655ad2antlr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  n  e.  ZZ )
57 elfzelz 9960 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... ( N  -  n
) )  ->  j  e.  ZZ )
5857adantl 275 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  j  e.  ZZ )
59 zcn 9196 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  n  e.  CC )
60 sub32 8132 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  n  e.  CC  /\  j  e.  CC )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6135, 59, 36, 60syl3an 1270 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ZZ  /\  j  e.  ZZ )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6254, 56, 58, 61syl3anc 1228 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6353, 62eqtrd 2198 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6463csbeq1d 3052 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  [_ (
( ( 0  +  N )  -  n
)  -  j )  /  x ]_ B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
6551, 64sumeq12rdv 11314 . . . . 5  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... ( N  -  n ) ) [_ ( ( N  -  j )  -  n
)  /  x ]_ B )
6665sumeq2dv 11309 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
0 ... N ) sum_ j  e.  ( 0 ... ( ( 0  +  N )  -  n ) ) [_ ( ( ( 0  +  N )  -  n )  -  j
)  /  x ]_ B  =  sum_ n  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... ( N  -  n ) )
[_ ( ( N  -  j )  -  n )  /  x ]_ B )
6718, 45, 663eqtr4d 2208 . . 3  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B )
68 0zd 9203 . . . 4  |-  ( ph  ->  0  e.  ZZ )
69 0zd 9203 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
70 elfzelz 9960 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
7170adantl 275 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
7269, 71fzfigd 10366 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
0 ... k )  e. 
Fin )
73 elfzuz3 9957 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... k )  ->  k  e.  ( ZZ>= `  j )
)
7473adantl 275 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ( ZZ>= `  j )
)
75 elfzuz3 9957 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  k )
)
7675adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  N  e.  ( ZZ>= `  k )
)
7776adantr 274 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  N  e.  ( ZZ>= `  k )
)
78 elfzuzb 9954 . . . . . . . . 9  |-  ( k  e.  ( j ... N )  <->  ( k  e.  ( ZZ>= `  j )  /\  N  e.  ( ZZ>=
`  k ) ) )
7974, 77, 78sylanbrc 414 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ( j ... N
) )
80 elfzelz 9960 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... k )  ->  j  e.  ZZ )
8180adantl 275 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  ZZ )
8217ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  N  e.  ZZ )
8370ad2antlr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ZZ )
84 fzsubel 9995 . . . . . . . . 9  |-  ( ( ( j  e.  ZZ  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( k  e.  ( j ... N )  <-> 
( k  -  j
)  e.  ( ( j  -  j ) ... ( N  -  j ) ) ) )
8581, 82, 83, 81, 84syl22anc 1229 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  e.  ( j ... N )  <->  ( k  -  j )  e.  ( ( j  -  j ) ... ( N  -  j )
) ) )
8679, 85mpbid 146 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  ( ( j  -  j ) ... ( N  -  j
) ) )
87 subid 8117 . . . . . . . . 9  |-  ( j  e.  CC  ->  (
j  -  j )  =  0 )
8881, 36, 873syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
j  -  j )  =  0 )
8988oveq1d 5857 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
( j  -  j
) ... ( N  -  j ) )  =  ( 0 ... ( N  -  j )
) )
9086, 89eleqtrd 2245 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  ( 0 ... ( N  -  j
) ) )
91 simpll 519 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  ph )
92 fzss2 9999 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  k
)  ->  ( 0 ... k )  C_  ( 0 ... N
) )
9376, 92syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
0 ... k )  C_  ( 0 ... N
) )
9493sselda 3142 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  ( 0 ... N
) )
9591, 94, 9syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  A. x  e.  ( 0 ... ( N  -  j )
) B  e.  CC )
96 nfcsb1v 3078 . . . . . . . 8  |-  F/_ x [_ ( k  -  j
)  /  x ]_ B
9796nfel1 2319 . . . . . . 7  |-  F/ x [_ ( k  -  j
)  /  x ]_ B  e.  CC
98 csbeq1a 3054 . . . . . . . 8  |-  ( x  =  ( k  -  j )  ->  B  =  [_ ( k  -  j )  /  x ]_ B )
9998eleq1d 2235 . . . . . . 7  |-  ( x  =  ( k  -  j )  ->  ( B  e.  CC  <->  [_ ( k  -  j )  /  x ]_ B  e.  CC ) )
10097, 99rspc 2824 . . . . . 6  |-  ( ( k  -  j )  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ (
k  -  j )  /  x ]_ B  e.  CC ) )
10190, 95, 100sylc 62 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  [_ (
k  -  j )  /  x ]_ B  e.  CC )
10272, 101fsumcl 11341 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  e.  CC )
103 oveq2 5850 . . . . 5  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  (
0 ... k )  =  ( 0 ... (
( 0  +  N
)  -  n ) ) )
104 oveq1 5849 . . . . . . 7  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  (
k  -  j )  =  ( ( ( 0  +  N )  -  n )  -  j ) )
105104csbeq1d 3052 . . . . . 6  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  [_ (
k  -  j )  /  x ]_ B  =  [_ ( ( ( 0  +  N )  -  n )  -  j )  /  x ]_ B )
106105adantr 274 . . . . 5  |-  ( ( k  =  ( ( 0  +  N )  -  n )  /\  j  e.  ( 0 ... k ) )  ->  [_ ( k  -  j )  /  x ]_ B  =  [_ (
( ( 0  +  N )  -  n
)  -  j )  /  x ]_ B
)
107103, 106sumeq12dv 11313 . . . 4  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... ( ( 0  +  N )  -  n ) ) [_ ( ( ( 0  +  N )  -  n )  -  j
)  /  x ]_ B )
10868, 17, 102, 107fisumrev2 11387 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N )
sum_ j  e.  ( 0 ... k )
[_ ( k  -  j )  /  x ]_ B  =  sum_ n  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B )
10967, 108eqtr4d 2201 . 2  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ k  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... k ) [_ ( k  -  j
)  /  x ]_ B )
110 vex 2729 . . . . . 6  |-  k  e. 
_V
111110, 6csbie 3090 . . . . 5  |-  [_ k  /  x ]_ B  =  A
112111a1i 9 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  [_ k  /  x ]_ B  =  A
)
113112sumeq2dv 11309 . . 3  |-  ( j  e.  ( 0 ... N )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ k  e.  ( 0 ... ( N  -  j ) ) A )
114113sumeq2i 11305 . 2  |-  sum_ j  e.  ( 0 ... N
) sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ j  e.  ( 0 ... N ) sum_ k  e.  ( 0 ... ( N  -  j ) ) A
11570adantr 274 . . . . . 6  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  k  e.  ZZ )
11680adantl 275 . . . . . 6  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  j  e.  ZZ )
117115, 116zsubcld 9318 . . . . 5  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  ( k  -  j )  e.  ZZ )
118 fsum0diag2.2 . . . . . 6  |-  ( x  =  ( k  -  j )  ->  B  =  C )
119118adantl 275 . . . . 5  |-  ( ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  /\  x  =  ( k  -  j
) )  ->  B  =  C )
120117, 119csbied 3091 . . . 4  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  [_ ( k  -  j )  /  x ]_ B  =  C
)
121120sumeq2dv 11309 . . 3  |-  ( k  e.  ( 0 ... N )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... k ) C )
122121sumeq2i 11305 . 2  |-  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k )
[_ ( k  -  j )  /  x ]_ B  =  sum_ k  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... k ) C
123109, 114, 1223eqtr3g 2222 1  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) ) A  =  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k ) C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   [_csb 3045    C_ wss 3116   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753    + caddc 7756    - cmin 8069   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  mertensabs  11478
  Copyright terms: Public domain W3C validator