| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fisum0diag2 | Unicode version | ||
| Description: Two ways to express
"the sum of |
| Ref | Expression |
|---|---|
| fsum0diag2.1 |
|
| fsum0diag2.2 |
|
| fsum0diag2.3 |
|
| fisum0diag2.n |
|
| Ref | Expression |
|---|---|
| fisum0diag2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fznn0sub2 10324 |
. . . . . . 7
| |
| 2 | 1 | ad2antll 491 |
. . . . . 6
|
| 3 | fsum0diag2.3 |
. . . . . . . . . 10
| |
| 4 | 3 | expr 375 |
. . . . . . . . 9
|
| 5 | 4 | ralrimiv 2602 |
. . . . . . . 8
|
| 6 | fsum0diag2.1 |
. . . . . . . . . 10
| |
| 7 | 6 | eleq1d 2298 |
. . . . . . . . 9
|
| 8 | 7 | cbvralv 2765 |
. . . . . . . 8
|
| 9 | 5, 8 | sylibr 134 |
. . . . . . 7
|
| 10 | 9 | adantrr 479 |
. . . . . 6
|
| 11 | nfcsb1v 3157 |
. . . . . . . 8
| |
| 12 | 11 | nfel1 2383 |
. . . . . . 7
|
| 13 | csbeq1a 3133 |
. . . . . . . 8
| |
| 14 | 13 | eleq1d 2298 |
. . . . . . 7
|
| 15 | 12, 14 | rspc 2901 |
. . . . . 6
|
| 16 | 2, 10, 15 | sylc 62 |
. . . . 5
|
| 17 | fisum0diag2.n |
. . . . 5
| |
| 18 | 16, 17 | fisum0diag 11952 |
. . . 4
|
| 19 | 0zd 9458 |
. . . . . . 7
| |
| 20 | 17 | adantr 276 |
. . . . . . . 8
|
| 21 | elfzelz 10221 |
. . . . . . . . 9
| |
| 22 | 21 | adantl 277 |
. . . . . . . 8
|
| 23 | 20, 22 | zsubcld 9574 |
. . . . . . 7
|
| 24 | nfcsb1v 3157 |
. . . . . . . . . 10
| |
| 25 | 24 | nfel1 2383 |
. . . . . . . . 9
|
| 26 | csbeq1a 3133 |
. . . . . . . . . 10
| |
| 27 | 26 | eleq1d 2298 |
. . . . . . . . 9
|
| 28 | 25, 27 | rspc 2901 |
. . . . . . . 8
|
| 29 | 9, 28 | mpan9 281 |
. . . . . . 7
|
| 30 | csbeq1 3127 |
. . . . . . 7
| |
| 31 | 19, 23, 29, 30 | fisumrev2 11957 |
. . . . . 6
|
| 32 | elfz3nn0 10311 |
. . . . . . . . . . . 12
| |
| 33 | 32 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 34 | 21 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 35 | nn0cn 9379 |
. . . . . . . . . . . 12
| |
| 36 | zcn 9451 |
. . . . . . . . . . . 12
| |
| 37 | subcl 8345 |
. . . . . . . . . . . 12
| |
| 38 | 35, 36, 37 | syl2an 289 |
. . . . . . . . . . 11
|
| 39 | 33, 34, 38 | syl2anc 411 |
. . . . . . . . . 10
|
| 40 | 39 | addlidd 8296 |
. . . . . . . . 9
|
| 41 | 40 | oveq1d 6016 |
. . . . . . . 8
|
| 42 | 41 | csbeq1d 3131 |
. . . . . . 7
|
| 43 | 42 | sumeq2dv 11879 |
. . . . . 6
|
| 44 | 31, 43 | eqtrd 2262 |
. . . . 5
|
| 45 | 44 | sumeq2dv 11879 |
. . . 4
|
| 46 | elfz3nn0 10311 |
. . . . . . . . . 10
| |
| 47 | 46 | adantl 277 |
. . . . . . . . 9
|
| 48 | addlid 8285 |
. . . . . . . . 9
| |
| 49 | 47, 35, 48 | 3syl 17 |
. . . . . . . 8
|
| 50 | 49 | oveq1d 6016 |
. . . . . . 7
|
| 51 | 50 | oveq2d 6017 |
. . . . . 6
|
| 52 | 50 | oveq1d 6016 |
. . . . . . . . 9
|
| 53 | 52 | adantr 276 |
. . . . . . . 8
|
| 54 | 46 | ad2antlr 489 |
. . . . . . . . 9
|
| 55 | elfzelz 10221 |
. . . . . . . . . 10
| |
| 56 | 55 | ad2antlr 489 |
. . . . . . . . 9
|
| 57 | elfzelz 10221 |
. . . . . . . . . 10
| |
| 58 | 57 | adantl 277 |
. . . . . . . . 9
|
| 59 | zcn 9451 |
. . . . . . . . . 10
| |
| 60 | sub32 8380 |
. . . . . . . . . 10
| |
| 61 | 35, 59, 36, 60 | syl3an 1313 |
. . . . . . . . 9
|
| 62 | 54, 56, 58, 61 | syl3anc 1271 |
. . . . . . . 8
|
| 63 | 53, 62 | eqtrd 2262 |
. . . . . . 7
|
| 64 | 63 | csbeq1d 3131 |
. . . . . 6
|
| 65 | 51, 64 | sumeq12rdv 11884 |
. . . . 5
|
| 66 | 65 | sumeq2dv 11879 |
. . . 4
|
| 67 | 18, 45, 66 | 3eqtr4d 2272 |
. . 3
|
| 68 | 0zd 9458 |
. . . 4
| |
| 69 | 0zd 9458 |
. . . . . 6
| |
| 70 | elfzelz 10221 |
. . . . . . 7
| |
| 71 | 70 | adantl 277 |
. . . . . 6
|
| 72 | 69, 71 | fzfigd 10653 |
. . . . 5
|
| 73 | elfzuz3 10218 |
. . . . . . . . . 10
| |
| 74 | 73 | adantl 277 |
. . . . . . . . 9
|
| 75 | elfzuz3 10218 |
. . . . . . . . . . 11
| |
| 76 | 75 | adantl 277 |
. . . . . . . . . 10
|
| 77 | 76 | adantr 276 |
. . . . . . . . 9
|
| 78 | elfzuzb 10215 |
. . . . . . . . 9
| |
| 79 | 74, 77, 78 | sylanbrc 417 |
. . . . . . . 8
|
| 80 | elfzelz 10221 |
. . . . . . . . . 10
| |
| 81 | 80 | adantl 277 |
. . . . . . . . 9
|
| 82 | 17 | ad2antrr 488 |
. . . . . . . . 9
|
| 83 | 70 | ad2antlr 489 |
. . . . . . . . 9
|
| 84 | fzsubel 10256 |
. . . . . . . . 9
| |
| 85 | 81, 82, 83, 81, 84 | syl22anc 1272 |
. . . . . . . 8
|
| 86 | 79, 85 | mpbid 147 |
. . . . . . 7
|
| 87 | subid 8365 |
. . . . . . . . 9
| |
| 88 | 81, 36, 87 | 3syl 17 |
. . . . . . . 8
|
| 89 | 88 | oveq1d 6016 |
. . . . . . 7
|
| 90 | 86, 89 | eleqtrd 2308 |
. . . . . 6
|
| 91 | simpll 527 |
. . . . . . 7
| |
| 92 | fzss2 10260 |
. . . . . . . . 9
| |
| 93 | 76, 92 | syl 14 |
. . . . . . . 8
|
| 94 | 93 | sselda 3224 |
. . . . . . 7
|
| 95 | 91, 94, 9 | syl2anc 411 |
. . . . . 6
|
| 96 | nfcsb1v 3157 |
. . . . . . . 8
| |
| 97 | 96 | nfel1 2383 |
. . . . . . 7
|
| 98 | csbeq1a 3133 |
. . . . . . . 8
| |
| 99 | 98 | eleq1d 2298 |
. . . . . . 7
|
| 100 | 97, 99 | rspc 2901 |
. . . . . 6
|
| 101 | 90, 95, 100 | sylc 62 |
. . . . 5
|
| 102 | 72, 101 | fsumcl 11911 |
. . . 4
|
| 103 | oveq2 6009 |
. . . . 5
| |
| 104 | oveq1 6008 |
. . . . . . 7
| |
| 105 | 104 | csbeq1d 3131 |
. . . . . 6
|
| 106 | 105 | adantr 276 |
. . . . 5
|
| 107 | 103, 106 | sumeq12dv 11883 |
. . . 4
|
| 108 | 68, 17, 102, 107 | fisumrev2 11957 |
. . 3
|
| 109 | 67, 108 | eqtr4d 2265 |
. 2
|
| 110 | vex 2802 |
. . . . . 6
| |
| 111 | 110, 6 | csbie 3170 |
. . . . 5
|
| 112 | 111 | a1i 9 |
. . . 4
|
| 113 | 112 | sumeq2dv 11879 |
. . 3
|
| 114 | 113 | sumeq2i 11875 |
. 2
|
| 115 | 70 | adantr 276 |
. . . . . 6
|
| 116 | 80 | adantl 277 |
. . . . . 6
|
| 117 | 115, 116 | zsubcld 9574 |
. . . . 5
|
| 118 | fsum0diag2.2 |
. . . . . 6
| |
| 119 | 118 | adantl 277 |
. . . . 5
|
| 120 | 117, 119 | csbied 3171 |
. . . 4
|
| 121 | 120 | sumeq2dv 11879 |
. . 3
|
| 122 | 121 | sumeq2i 11875 |
. 2
|
| 123 | 109, 114, 122 | 3eqtr3g 2285 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-disj 4060 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-exp 10761 df-ihash 10998 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-sumdc 11865 |
| This theorem is referenced by: mertensabs 12048 plymullem1 15422 |
| Copyright terms: Public domain | W3C validator |