| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fisum0diag2 | Unicode version | ||
| Description: Two ways to express
"the sum of |
| Ref | Expression |
|---|---|
| fsum0diag2.1 |
|
| fsum0diag2.2 |
|
| fsum0diag2.3 |
|
| fisum0diag2.n |
|
| Ref | Expression |
|---|---|
| fisum0diag2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fznn0sub2 10285 |
. . . . . . 7
| |
| 2 | 1 | ad2antll 491 |
. . . . . 6
|
| 3 | fsum0diag2.3 |
. . . . . . . . . 10
| |
| 4 | 3 | expr 375 |
. . . . . . . . 9
|
| 5 | 4 | ralrimiv 2580 |
. . . . . . . 8
|
| 6 | fsum0diag2.1 |
. . . . . . . . . 10
| |
| 7 | 6 | eleq1d 2276 |
. . . . . . . . 9
|
| 8 | 7 | cbvralv 2742 |
. . . . . . . 8
|
| 9 | 5, 8 | sylibr 134 |
. . . . . . 7
|
| 10 | 9 | adantrr 479 |
. . . . . 6
|
| 11 | nfcsb1v 3134 |
. . . . . . . 8
| |
| 12 | 11 | nfel1 2361 |
. . . . . . 7
|
| 13 | csbeq1a 3110 |
. . . . . . . 8
| |
| 14 | 13 | eleq1d 2276 |
. . . . . . 7
|
| 15 | 12, 14 | rspc 2878 |
. . . . . 6
|
| 16 | 2, 10, 15 | sylc 62 |
. . . . 5
|
| 17 | fisum0diag2.n |
. . . . 5
| |
| 18 | 16, 17 | fisum0diag 11867 |
. . . 4
|
| 19 | 0zd 9419 |
. . . . . . 7
| |
| 20 | 17 | adantr 276 |
. . . . . . . 8
|
| 21 | elfzelz 10182 |
. . . . . . . . 9
| |
| 22 | 21 | adantl 277 |
. . . . . . . 8
|
| 23 | 20, 22 | zsubcld 9535 |
. . . . . . 7
|
| 24 | nfcsb1v 3134 |
. . . . . . . . . 10
| |
| 25 | 24 | nfel1 2361 |
. . . . . . . . 9
|
| 26 | csbeq1a 3110 |
. . . . . . . . . 10
| |
| 27 | 26 | eleq1d 2276 |
. . . . . . . . 9
|
| 28 | 25, 27 | rspc 2878 |
. . . . . . . 8
|
| 29 | 9, 28 | mpan9 281 |
. . . . . . 7
|
| 30 | csbeq1 3104 |
. . . . . . 7
| |
| 31 | 19, 23, 29, 30 | fisumrev2 11872 |
. . . . . 6
|
| 32 | elfz3nn0 10272 |
. . . . . . . . . . . 12
| |
| 33 | 32 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 34 | 21 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 35 | nn0cn 9340 |
. . . . . . . . . . . 12
| |
| 36 | zcn 9412 |
. . . . . . . . . . . 12
| |
| 37 | subcl 8306 |
. . . . . . . . . . . 12
| |
| 38 | 35, 36, 37 | syl2an 289 |
. . . . . . . . . . 11
|
| 39 | 33, 34, 38 | syl2anc 411 |
. . . . . . . . . 10
|
| 40 | 39 | addlidd 8257 |
. . . . . . . . 9
|
| 41 | 40 | oveq1d 5982 |
. . . . . . . 8
|
| 42 | 41 | csbeq1d 3108 |
. . . . . . 7
|
| 43 | 42 | sumeq2dv 11794 |
. . . . . 6
|
| 44 | 31, 43 | eqtrd 2240 |
. . . . 5
|
| 45 | 44 | sumeq2dv 11794 |
. . . 4
|
| 46 | elfz3nn0 10272 |
. . . . . . . . . 10
| |
| 47 | 46 | adantl 277 |
. . . . . . . . 9
|
| 48 | addlid 8246 |
. . . . . . . . 9
| |
| 49 | 47, 35, 48 | 3syl 17 |
. . . . . . . 8
|
| 50 | 49 | oveq1d 5982 |
. . . . . . 7
|
| 51 | 50 | oveq2d 5983 |
. . . . . 6
|
| 52 | 50 | oveq1d 5982 |
. . . . . . . . 9
|
| 53 | 52 | adantr 276 |
. . . . . . . 8
|
| 54 | 46 | ad2antlr 489 |
. . . . . . . . 9
|
| 55 | elfzelz 10182 |
. . . . . . . . . 10
| |
| 56 | 55 | ad2antlr 489 |
. . . . . . . . 9
|
| 57 | elfzelz 10182 |
. . . . . . . . . 10
| |
| 58 | 57 | adantl 277 |
. . . . . . . . 9
|
| 59 | zcn 9412 |
. . . . . . . . . 10
| |
| 60 | sub32 8341 |
. . . . . . . . . 10
| |
| 61 | 35, 59, 36, 60 | syl3an 1292 |
. . . . . . . . 9
|
| 62 | 54, 56, 58, 61 | syl3anc 1250 |
. . . . . . . 8
|
| 63 | 53, 62 | eqtrd 2240 |
. . . . . . 7
|
| 64 | 63 | csbeq1d 3108 |
. . . . . 6
|
| 65 | 51, 64 | sumeq12rdv 11799 |
. . . . 5
|
| 66 | 65 | sumeq2dv 11794 |
. . . 4
|
| 67 | 18, 45, 66 | 3eqtr4d 2250 |
. . 3
|
| 68 | 0zd 9419 |
. . . 4
| |
| 69 | 0zd 9419 |
. . . . . 6
| |
| 70 | elfzelz 10182 |
. . . . . . 7
| |
| 71 | 70 | adantl 277 |
. . . . . 6
|
| 72 | 69, 71 | fzfigd 10613 |
. . . . 5
|
| 73 | elfzuz3 10179 |
. . . . . . . . . 10
| |
| 74 | 73 | adantl 277 |
. . . . . . . . 9
|
| 75 | elfzuz3 10179 |
. . . . . . . . . . 11
| |
| 76 | 75 | adantl 277 |
. . . . . . . . . 10
|
| 77 | 76 | adantr 276 |
. . . . . . . . 9
|
| 78 | elfzuzb 10176 |
. . . . . . . . 9
| |
| 79 | 74, 77, 78 | sylanbrc 417 |
. . . . . . . 8
|
| 80 | elfzelz 10182 |
. . . . . . . . . 10
| |
| 81 | 80 | adantl 277 |
. . . . . . . . 9
|
| 82 | 17 | ad2antrr 488 |
. . . . . . . . 9
|
| 83 | 70 | ad2antlr 489 |
. . . . . . . . 9
|
| 84 | fzsubel 10217 |
. . . . . . . . 9
| |
| 85 | 81, 82, 83, 81, 84 | syl22anc 1251 |
. . . . . . . 8
|
| 86 | 79, 85 | mpbid 147 |
. . . . . . 7
|
| 87 | subid 8326 |
. . . . . . . . 9
| |
| 88 | 81, 36, 87 | 3syl 17 |
. . . . . . . 8
|
| 89 | 88 | oveq1d 5982 |
. . . . . . 7
|
| 90 | 86, 89 | eleqtrd 2286 |
. . . . . 6
|
| 91 | simpll 527 |
. . . . . . 7
| |
| 92 | fzss2 10221 |
. . . . . . . . 9
| |
| 93 | 76, 92 | syl 14 |
. . . . . . . 8
|
| 94 | 93 | sselda 3201 |
. . . . . . 7
|
| 95 | 91, 94, 9 | syl2anc 411 |
. . . . . 6
|
| 96 | nfcsb1v 3134 |
. . . . . . . 8
| |
| 97 | 96 | nfel1 2361 |
. . . . . . 7
|
| 98 | csbeq1a 3110 |
. . . . . . . 8
| |
| 99 | 98 | eleq1d 2276 |
. . . . . . 7
|
| 100 | 97, 99 | rspc 2878 |
. . . . . 6
|
| 101 | 90, 95, 100 | sylc 62 |
. . . . 5
|
| 102 | 72, 101 | fsumcl 11826 |
. . . 4
|
| 103 | oveq2 5975 |
. . . . 5
| |
| 104 | oveq1 5974 |
. . . . . . 7
| |
| 105 | 104 | csbeq1d 3108 |
. . . . . 6
|
| 106 | 105 | adantr 276 |
. . . . 5
|
| 107 | 103, 106 | sumeq12dv 11798 |
. . . 4
|
| 108 | 68, 17, 102, 107 | fisumrev2 11872 |
. . 3
|
| 109 | 67, 108 | eqtr4d 2243 |
. 2
|
| 110 | vex 2779 |
. . . . . 6
| |
| 111 | 110, 6 | csbie 3147 |
. . . . 5
|
| 112 | 111 | a1i 9 |
. . . 4
|
| 113 | 112 | sumeq2dv 11794 |
. . 3
|
| 114 | 113 | sumeq2i 11790 |
. 2
|
| 115 | 70 | adantr 276 |
. . . . . 6
|
| 116 | 80 | adantl 277 |
. . . . . 6
|
| 117 | 115, 116 | zsubcld 9535 |
. . . . 5
|
| 118 | fsum0diag2.2 |
. . . . . 6
| |
| 119 | 118 | adantl 277 |
. . . . 5
|
| 120 | 117, 119 | csbied 3148 |
. . . 4
|
| 121 | 120 | sumeq2dv 11794 |
. . 3
|
| 122 | 121 | sumeq2i 11790 |
. 2
|
| 123 | 109, 114, 122 | 3eqtr3g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 |
| This theorem is referenced by: mertensabs 11963 plymullem1 15335 |
| Copyright terms: Public domain | W3C validator |