ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisum0diag2 Unicode version

Theorem fisum0diag2 11631
Description: Two ways to express "the sum of  A ( j ,  k ) over the triangular region  0  <_  j, 
0  <_  k,  j  +  k  <_  N". (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
fsum0diag2.1  |-  ( x  =  k  ->  B  =  A )
fsum0diag2.2  |-  ( x  =  ( k  -  j )  ->  B  =  C )
fsum0diag2.3  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) ) )  ->  A  e.  CC )
fisum0diag2.n  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
fisum0diag2  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) ) A  =  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k ) C )
Distinct variable groups:    j, k, x, N    ph, j, k    B, k    x, A    x, C
Allowed substitution hints:    ph( x)    A( j,
k)    B( x, j)    C( j, k)

Proof of Theorem fisum0diag2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 fznn0sub2 10222 . . . . . . 7  |-  ( n  e.  ( 0 ... ( N  -  j
) )  ->  (
( N  -  j
)  -  n )  e.  ( 0 ... ( N  -  j
) ) )
21ad2antll 491 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  -> 
( ( N  -  j )  -  n
)  e.  ( 0 ... ( N  -  j ) ) )
3 fsum0diag2.3 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) ) )  ->  A  e.  CC )
43expr 375 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  (
k  e.  ( 0 ... ( N  -  j ) )  ->  A  e.  CC )
)
54ralrimiv 2569 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  A. k  e.  ( 0 ... ( N  -  j )
) A  e.  CC )
6 fsum0diag2.1 . . . . . . . . . 10  |-  ( x  =  k  ->  B  =  A )
76eleq1d 2265 . . . . . . . . 9  |-  ( x  =  k  ->  ( B  e.  CC  <->  A  e.  CC ) )
87cbvralv 2729 . . . . . . . 8  |-  ( A. x  e.  ( 0 ... ( N  -  j ) ) B  e.  CC  <->  A. k  e.  ( 0 ... ( N  -  j )
) A  e.  CC )
95, 8sylibr 134 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  A. x  e.  ( 0 ... ( N  -  j )
) B  e.  CC )
109adantrr 479 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  ->  A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC )
11 nfcsb1v 3117 . . . . . . . 8  |-  F/_ x [_ ( ( N  -  j )  -  n
)  /  x ]_ B
1211nfel1 2350 . . . . . . 7  |-  F/ x [_ ( ( N  -  j )  -  n
)  /  x ]_ B  e.  CC
13 csbeq1a 3093 . . . . . . . 8  |-  ( x  =  ( ( N  -  j )  -  n )  ->  B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
1413eleq1d 2265 . . . . . . 7  |-  ( x  =  ( ( N  -  j )  -  n )  ->  ( B  e.  CC  <->  [_ ( ( N  -  j )  -  n )  /  x ]_ B  e.  CC ) )
1512, 14rspc 2862 . . . . . 6  |-  ( ( ( N  -  j
)  -  n )  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ (
( N  -  j
)  -  n )  /  x ]_ B  e.  CC ) )
162, 10, 15sylc 62 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  ->  [_ ( ( N  -  j )  -  n
)  /  x ]_ B  e.  CC )
17 fisum0diag2.n . . . . 5  |-  ( ph  ->  N  e.  ZZ )
1816, 17fisum0diag 11625 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ n  e.  (
0 ... ( N  -  j ) ) [_ ( ( N  -  j )  -  n
)  /  x ]_ B  =  sum_ n  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... ( N  -  n ) )
[_ ( ( N  -  j )  -  n )  /  x ]_ B )
19 0zd 9357 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
2017adantr 276 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  N  e.  ZZ )
21 elfzelz 10119 . . . . . . . . 9  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ZZ )
2221adantl 277 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  j  e.  ZZ )
2320, 22zsubcld 9472 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  ( N  -  j )  e.  ZZ )
24 nfcsb1v 3117 . . . . . . . . . 10  |-  F/_ x [_ k  /  x ]_ B
2524nfel1 2350 . . . . . . . . 9  |-  F/ x [_ k  /  x ]_ B  e.  CC
26 csbeq1a 3093 . . . . . . . . . 10  |-  ( x  =  k  ->  B  =  [_ k  /  x ]_ B )
2726eleq1d 2265 . . . . . . . . 9  |-  ( x  =  k  ->  ( B  e.  CC  <->  [_ k  /  x ]_ B  e.  CC ) )
2825, 27rspc 2862 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ k  /  x ]_ B  e.  CC ) )
299, 28mpan9 281 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  k  e.  ( 0 ... ( N  -  j )
) )  ->  [_ k  /  x ]_ B  e.  CC )
30 csbeq1 3087 . . . . . . 7  |-  ( k  =  ( ( 0  +  ( N  -  j ) )  -  n )  ->  [_ k  /  x ]_ B  = 
[_ ( ( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B )
3119, 23, 29, 30fisumrev2 11630 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B
)
32 elfz3nn0 10209 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... N )  ->  N  e.  NN0 )
3332ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  N  e.  NN0 )
3421ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  j  e.  ZZ )
35 nn0cn 9278 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  CC )
36 zcn 9350 . . . . . . . . . . . 12  |-  ( j  e.  ZZ  ->  j  e.  CC )
37 subcl 8244 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  j  e.  CC )  ->  ( N  -  j
)  e.  CC )
3835, 36, 37syl2an 289 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  j  e.  ZZ )  ->  ( N  -  j
)  e.  CC )
3933, 34, 38syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  ( N  -  j )  e.  CC )
4039addlidd 8195 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  (
0  +  ( N  -  j ) )  =  ( N  -  j ) )
4140oveq1d 5940 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  (
( 0  +  ( N  -  j ) )  -  n )  =  ( ( N  -  j )  -  n ) )
4241csbeq1d 3091 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  [_ (
( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
4342sumeq2dv 11552 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ n  e.  ( 0 ... ( N  -  j )
) [_ ( ( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
4431, 43eqtrd 2229 . . . . 5  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
4544sumeq2dv 11552 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ j  e.  ( 0 ... N ) sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
46 elfz3nn0 10209 . . . . . . . . . 10  |-  ( n  e.  ( 0 ... N )  ->  N  e.  NN0 )
4746adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  N  e.  NN0 )
48 addlid 8184 . . . . . . . . 9  |-  ( N  e.  CC  ->  (
0  +  N )  =  N )
4947, 35, 483syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
0  +  N )  =  N )
5049oveq1d 5940 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
( 0  +  N
)  -  n )  =  ( N  -  n ) )
5150oveq2d 5941 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
0 ... ( ( 0  +  N )  -  n ) )  =  ( 0 ... ( N  -  n )
) )
5250oveq1d 5940 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  n )  -  j ) )
5352adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  n )  -  j ) )
5446ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  N  e.  NN0 )
55 elfzelz 10119 . . . . . . . . . 10  |-  ( n  e.  ( 0 ... N )  ->  n  e.  ZZ )
5655ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  n  e.  ZZ )
57 elfzelz 10119 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... ( N  -  n
) )  ->  j  e.  ZZ )
5857adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  j  e.  ZZ )
59 zcn 9350 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  n  e.  CC )
60 sub32 8279 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  n  e.  CC  /\  j  e.  CC )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6135, 59, 36, 60syl3an 1291 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ZZ  /\  j  e.  ZZ )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6254, 56, 58, 61syl3anc 1249 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6353, 62eqtrd 2229 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6463csbeq1d 3091 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  [_ (
( ( 0  +  N )  -  n
)  -  j )  /  x ]_ B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
6551, 64sumeq12rdv 11557 . . . . 5  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... ( N  -  n ) ) [_ ( ( N  -  j )  -  n
)  /  x ]_ B )
6665sumeq2dv 11552 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
0 ... N ) sum_ j  e.  ( 0 ... ( ( 0  +  N )  -  n ) ) [_ ( ( ( 0  +  N )  -  n )  -  j
)  /  x ]_ B  =  sum_ n  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... ( N  -  n ) )
[_ ( ( N  -  j )  -  n )  /  x ]_ B )
6718, 45, 663eqtr4d 2239 . . 3  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B )
68 0zd 9357 . . . 4  |-  ( ph  ->  0  e.  ZZ )
69 0zd 9357 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
70 elfzelz 10119 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
7170adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
7269, 71fzfigd 10542 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
0 ... k )  e. 
Fin )
73 elfzuz3 10116 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... k )  ->  k  e.  ( ZZ>= `  j )
)
7473adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ( ZZ>= `  j )
)
75 elfzuz3 10116 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  k )
)
7675adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  N  e.  ( ZZ>= `  k )
)
7776adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  N  e.  ( ZZ>= `  k )
)
78 elfzuzb 10113 . . . . . . . . 9  |-  ( k  e.  ( j ... N )  <->  ( k  e.  ( ZZ>= `  j )  /\  N  e.  ( ZZ>=
`  k ) ) )
7974, 77, 78sylanbrc 417 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ( j ... N
) )
80 elfzelz 10119 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... k )  ->  j  e.  ZZ )
8180adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  ZZ )
8217ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  N  e.  ZZ )
8370ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ZZ )
84 fzsubel 10154 . . . . . . . . 9  |-  ( ( ( j  e.  ZZ  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( k  e.  ( j ... N )  <-> 
( k  -  j
)  e.  ( ( j  -  j ) ... ( N  -  j ) ) ) )
8581, 82, 83, 81, 84syl22anc 1250 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  e.  ( j ... N )  <->  ( k  -  j )  e.  ( ( j  -  j ) ... ( N  -  j )
) ) )
8679, 85mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  ( ( j  -  j ) ... ( N  -  j
) ) )
87 subid 8264 . . . . . . . . 9  |-  ( j  e.  CC  ->  (
j  -  j )  =  0 )
8881, 36, 873syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
j  -  j )  =  0 )
8988oveq1d 5940 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
( j  -  j
) ... ( N  -  j ) )  =  ( 0 ... ( N  -  j )
) )
9086, 89eleqtrd 2275 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  ( 0 ... ( N  -  j
) ) )
91 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  ph )
92 fzss2 10158 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  k
)  ->  ( 0 ... k )  C_  ( 0 ... N
) )
9376, 92syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
0 ... k )  C_  ( 0 ... N
) )
9493sselda 3184 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  ( 0 ... N
) )
9591, 94, 9syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  A. x  e.  ( 0 ... ( N  -  j )
) B  e.  CC )
96 nfcsb1v 3117 . . . . . . . 8  |-  F/_ x [_ ( k  -  j
)  /  x ]_ B
9796nfel1 2350 . . . . . . 7  |-  F/ x [_ ( k  -  j
)  /  x ]_ B  e.  CC
98 csbeq1a 3093 . . . . . . . 8  |-  ( x  =  ( k  -  j )  ->  B  =  [_ ( k  -  j )  /  x ]_ B )
9998eleq1d 2265 . . . . . . 7  |-  ( x  =  ( k  -  j )  ->  ( B  e.  CC  <->  [_ ( k  -  j )  /  x ]_ B  e.  CC ) )
10097, 99rspc 2862 . . . . . 6  |-  ( ( k  -  j )  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ (
k  -  j )  /  x ]_ B  e.  CC ) )
10190, 95, 100sylc 62 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  [_ (
k  -  j )  /  x ]_ B  e.  CC )
10272, 101fsumcl 11584 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  e.  CC )
103 oveq2 5933 . . . . 5  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  (
0 ... k )  =  ( 0 ... (
( 0  +  N
)  -  n ) ) )
104 oveq1 5932 . . . . . . 7  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  (
k  -  j )  =  ( ( ( 0  +  N )  -  n )  -  j ) )
105104csbeq1d 3091 . . . . . 6  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  [_ (
k  -  j )  /  x ]_ B  =  [_ ( ( ( 0  +  N )  -  n )  -  j )  /  x ]_ B )
106105adantr 276 . . . . 5  |-  ( ( k  =  ( ( 0  +  N )  -  n )  /\  j  e.  ( 0 ... k ) )  ->  [_ ( k  -  j )  /  x ]_ B  =  [_ (
( ( 0  +  N )  -  n
)  -  j )  /  x ]_ B
)
107103, 106sumeq12dv 11556 . . . 4  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... ( ( 0  +  N )  -  n ) ) [_ ( ( ( 0  +  N )  -  n )  -  j
)  /  x ]_ B )
10868, 17, 102, 107fisumrev2 11630 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N )
sum_ j  e.  ( 0 ... k )
[_ ( k  -  j )  /  x ]_ B  =  sum_ n  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B )
10967, 108eqtr4d 2232 . 2  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ k  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... k ) [_ ( k  -  j
)  /  x ]_ B )
110 vex 2766 . . . . . 6  |-  k  e. 
_V
111110, 6csbie 3130 . . . . 5  |-  [_ k  /  x ]_ B  =  A
112111a1i 9 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  [_ k  /  x ]_ B  =  A
)
113112sumeq2dv 11552 . . 3  |-  ( j  e.  ( 0 ... N )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ k  e.  ( 0 ... ( N  -  j ) ) A )
114113sumeq2i 11548 . 2  |-  sum_ j  e.  ( 0 ... N
) sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ j  e.  ( 0 ... N ) sum_ k  e.  ( 0 ... ( N  -  j ) ) A
11570adantr 276 . . . . . 6  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  k  e.  ZZ )
11680adantl 277 . . . . . 6  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  j  e.  ZZ )
117115, 116zsubcld 9472 . . . . 5  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  ( k  -  j )  e.  ZZ )
118 fsum0diag2.2 . . . . . 6  |-  ( x  =  ( k  -  j )  ->  B  =  C )
119118adantl 277 . . . . 5  |-  ( ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  /\  x  =  ( k  -  j
) )  ->  B  =  C )
120117, 119csbied 3131 . . . 4  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  [_ ( k  -  j )  /  x ]_ B  =  C
)
121120sumeq2dv 11552 . . 3  |-  ( k  e.  ( 0 ... N )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... k ) C )
122121sumeq2i 11548 . 2  |-  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k )
[_ ( k  -  j )  /  x ]_ B  =  sum_ k  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... k ) C
123109, 114, 1223eqtr3g 2252 1  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) ) A  =  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k ) C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   [_csb 3084    C_ wss 3157   ` cfv 5259  (class class class)co 5925   CCcc 7896   0cc0 7898    + caddc 7901    - cmin 8216   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   ...cfz 10102   sum_csu 11537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538
This theorem is referenced by:  mertensabs  11721  plymullem1  15092
  Copyright terms: Public domain W3C validator