| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fisum0diag2 | Unicode version | ||
| Description: Two ways to express
"the sum of |
| Ref | Expression |
|---|---|
| fsum0diag2.1 |
|
| fsum0diag2.2 |
|
| fsum0diag2.3 |
|
| fisum0diag2.n |
|
| Ref | Expression |
|---|---|
| fisum0diag2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fznn0sub2 10252 |
. . . . . . 7
| |
| 2 | 1 | ad2antll 491 |
. . . . . 6
|
| 3 | fsum0diag2.3 |
. . . . . . . . . 10
| |
| 4 | 3 | expr 375 |
. . . . . . . . 9
|
| 5 | 4 | ralrimiv 2578 |
. . . . . . . 8
|
| 6 | fsum0diag2.1 |
. . . . . . . . . 10
| |
| 7 | 6 | eleq1d 2274 |
. . . . . . . . 9
|
| 8 | 7 | cbvralv 2738 |
. . . . . . . 8
|
| 9 | 5, 8 | sylibr 134 |
. . . . . . 7
|
| 10 | 9 | adantrr 479 |
. . . . . 6
|
| 11 | nfcsb1v 3126 |
. . . . . . . 8
| |
| 12 | 11 | nfel1 2359 |
. . . . . . 7
|
| 13 | csbeq1a 3102 |
. . . . . . . 8
| |
| 14 | 13 | eleq1d 2274 |
. . . . . . 7
|
| 15 | 12, 14 | rspc 2871 |
. . . . . 6
|
| 16 | 2, 10, 15 | sylc 62 |
. . . . 5
|
| 17 | fisum0diag2.n |
. . . . 5
| |
| 18 | 16, 17 | fisum0diag 11785 |
. . . 4
|
| 19 | 0zd 9386 |
. . . . . . 7
| |
| 20 | 17 | adantr 276 |
. . . . . . . 8
|
| 21 | elfzelz 10149 |
. . . . . . . . 9
| |
| 22 | 21 | adantl 277 |
. . . . . . . 8
|
| 23 | 20, 22 | zsubcld 9502 |
. . . . . . 7
|
| 24 | nfcsb1v 3126 |
. . . . . . . . . 10
| |
| 25 | 24 | nfel1 2359 |
. . . . . . . . 9
|
| 26 | csbeq1a 3102 |
. . . . . . . . . 10
| |
| 27 | 26 | eleq1d 2274 |
. . . . . . . . 9
|
| 28 | 25, 27 | rspc 2871 |
. . . . . . . 8
|
| 29 | 9, 28 | mpan9 281 |
. . . . . . 7
|
| 30 | csbeq1 3096 |
. . . . . . 7
| |
| 31 | 19, 23, 29, 30 | fisumrev2 11790 |
. . . . . 6
|
| 32 | elfz3nn0 10239 |
. . . . . . . . . . . 12
| |
| 33 | 32 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 34 | 21 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 35 | nn0cn 9307 |
. . . . . . . . . . . 12
| |
| 36 | zcn 9379 |
. . . . . . . . . . . 12
| |
| 37 | subcl 8273 |
. . . . . . . . . . . 12
| |
| 38 | 35, 36, 37 | syl2an 289 |
. . . . . . . . . . 11
|
| 39 | 33, 34, 38 | syl2anc 411 |
. . . . . . . . . 10
|
| 40 | 39 | addlidd 8224 |
. . . . . . . . 9
|
| 41 | 40 | oveq1d 5961 |
. . . . . . . 8
|
| 42 | 41 | csbeq1d 3100 |
. . . . . . 7
|
| 43 | 42 | sumeq2dv 11712 |
. . . . . 6
|
| 44 | 31, 43 | eqtrd 2238 |
. . . . 5
|
| 45 | 44 | sumeq2dv 11712 |
. . . 4
|
| 46 | elfz3nn0 10239 |
. . . . . . . . . 10
| |
| 47 | 46 | adantl 277 |
. . . . . . . . 9
|
| 48 | addlid 8213 |
. . . . . . . . 9
| |
| 49 | 47, 35, 48 | 3syl 17 |
. . . . . . . 8
|
| 50 | 49 | oveq1d 5961 |
. . . . . . 7
|
| 51 | 50 | oveq2d 5962 |
. . . . . 6
|
| 52 | 50 | oveq1d 5961 |
. . . . . . . . 9
|
| 53 | 52 | adantr 276 |
. . . . . . . 8
|
| 54 | 46 | ad2antlr 489 |
. . . . . . . . 9
|
| 55 | elfzelz 10149 |
. . . . . . . . . 10
| |
| 56 | 55 | ad2antlr 489 |
. . . . . . . . 9
|
| 57 | elfzelz 10149 |
. . . . . . . . . 10
| |
| 58 | 57 | adantl 277 |
. . . . . . . . 9
|
| 59 | zcn 9379 |
. . . . . . . . . 10
| |
| 60 | sub32 8308 |
. . . . . . . . . 10
| |
| 61 | 35, 59, 36, 60 | syl3an 1292 |
. . . . . . . . 9
|
| 62 | 54, 56, 58, 61 | syl3anc 1250 |
. . . . . . . 8
|
| 63 | 53, 62 | eqtrd 2238 |
. . . . . . 7
|
| 64 | 63 | csbeq1d 3100 |
. . . . . 6
|
| 65 | 51, 64 | sumeq12rdv 11717 |
. . . . 5
|
| 66 | 65 | sumeq2dv 11712 |
. . . 4
|
| 67 | 18, 45, 66 | 3eqtr4d 2248 |
. . 3
|
| 68 | 0zd 9386 |
. . . 4
| |
| 69 | 0zd 9386 |
. . . . . 6
| |
| 70 | elfzelz 10149 |
. . . . . . 7
| |
| 71 | 70 | adantl 277 |
. . . . . 6
|
| 72 | 69, 71 | fzfigd 10578 |
. . . . 5
|
| 73 | elfzuz3 10146 |
. . . . . . . . . 10
| |
| 74 | 73 | adantl 277 |
. . . . . . . . 9
|
| 75 | elfzuz3 10146 |
. . . . . . . . . . 11
| |
| 76 | 75 | adantl 277 |
. . . . . . . . . 10
|
| 77 | 76 | adantr 276 |
. . . . . . . . 9
|
| 78 | elfzuzb 10143 |
. . . . . . . . 9
| |
| 79 | 74, 77, 78 | sylanbrc 417 |
. . . . . . . 8
|
| 80 | elfzelz 10149 |
. . . . . . . . . 10
| |
| 81 | 80 | adantl 277 |
. . . . . . . . 9
|
| 82 | 17 | ad2antrr 488 |
. . . . . . . . 9
|
| 83 | 70 | ad2antlr 489 |
. . . . . . . . 9
|
| 84 | fzsubel 10184 |
. . . . . . . . 9
| |
| 85 | 81, 82, 83, 81, 84 | syl22anc 1251 |
. . . . . . . 8
|
| 86 | 79, 85 | mpbid 147 |
. . . . . . 7
|
| 87 | subid 8293 |
. . . . . . . . 9
| |
| 88 | 81, 36, 87 | 3syl 17 |
. . . . . . . 8
|
| 89 | 88 | oveq1d 5961 |
. . . . . . 7
|
| 90 | 86, 89 | eleqtrd 2284 |
. . . . . 6
|
| 91 | simpll 527 |
. . . . . . 7
| |
| 92 | fzss2 10188 |
. . . . . . . . 9
| |
| 93 | 76, 92 | syl 14 |
. . . . . . . 8
|
| 94 | 93 | sselda 3193 |
. . . . . . 7
|
| 95 | 91, 94, 9 | syl2anc 411 |
. . . . . 6
|
| 96 | nfcsb1v 3126 |
. . . . . . . 8
| |
| 97 | 96 | nfel1 2359 |
. . . . . . 7
|
| 98 | csbeq1a 3102 |
. . . . . . . 8
| |
| 99 | 98 | eleq1d 2274 |
. . . . . . 7
|
| 100 | 97, 99 | rspc 2871 |
. . . . . 6
|
| 101 | 90, 95, 100 | sylc 62 |
. . . . 5
|
| 102 | 72, 101 | fsumcl 11744 |
. . . 4
|
| 103 | oveq2 5954 |
. . . . 5
| |
| 104 | oveq1 5953 |
. . . . . . 7
| |
| 105 | 104 | csbeq1d 3100 |
. . . . . 6
|
| 106 | 105 | adantr 276 |
. . . . 5
|
| 107 | 103, 106 | sumeq12dv 11716 |
. . . 4
|
| 108 | 68, 17, 102, 107 | fisumrev2 11790 |
. . 3
|
| 109 | 67, 108 | eqtr4d 2241 |
. 2
|
| 110 | vex 2775 |
. . . . . 6
| |
| 111 | 110, 6 | csbie 3139 |
. . . . 5
|
| 112 | 111 | a1i 9 |
. . . 4
|
| 113 | 112 | sumeq2dv 11712 |
. . 3
|
| 114 | 113 | sumeq2i 11708 |
. 2
|
| 115 | 70 | adantr 276 |
. . . . . 6
|
| 116 | 80 | adantl 277 |
. . . . . 6
|
| 117 | 115, 116 | zsubcld 9502 |
. . . . 5
|
| 118 | fsum0diag2.2 |
. . . . . 6
| |
| 119 | 118 | adantl 277 |
. . . . 5
|
| 120 | 117, 119 | csbied 3140 |
. . . 4
|
| 121 | 120 | sumeq2dv 11712 |
. . 3
|
| 122 | 121 | sumeq2i 11708 |
. 2
|
| 123 | 109, 114, 122 | 3eqtr3g 2261 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-disj 4022 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-frec 6479 df-1o 6504 df-oadd 6508 df-er 6622 df-en 6830 df-dom 6831 df-fin 6832 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-fz 10133 df-fzo 10267 df-seqfrec 10595 df-exp 10686 df-ihash 10923 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-clim 11623 df-sumdc 11698 |
| This theorem is referenced by: mertensabs 11881 plymullem1 15253 |
| Copyright terms: Public domain | W3C validator |