ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisum0diag2 Unicode version

Theorem fisum0diag2 11455
Description: Two ways to express "the sum of  A ( j ,  k ) over the triangular region  0  <_  j, 
0  <_  k,  j  +  k  <_  N". (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
fsum0diag2.1  |-  ( x  =  k  ->  B  =  A )
fsum0diag2.2  |-  ( x  =  ( k  -  j )  ->  B  =  C )
fsum0diag2.3  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) ) )  ->  A  e.  CC )
fisum0diag2.n  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
fisum0diag2  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) ) A  =  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k ) C )
Distinct variable groups:    j, k, x, N    ph, j, k    B, k    x, A    x, C
Allowed substitution hints:    ph( x)    A( j,
k)    B( x, j)    C( j, k)

Proof of Theorem fisum0diag2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 fznn0sub2 10128 . . . . . . 7  |-  ( n  e.  ( 0 ... ( N  -  j
) )  ->  (
( N  -  j
)  -  n )  e.  ( 0 ... ( N  -  j
) ) )
21ad2antll 491 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  -> 
( ( N  -  j )  -  n
)  e.  ( 0 ... ( N  -  j ) ) )
3 fsum0diag2.3 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  k  e.  ( 0 ... ( N  -  j )
) ) )  ->  A  e.  CC )
43expr 375 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  (
k  e.  ( 0 ... ( N  -  j ) )  ->  A  e.  CC )
)
54ralrimiv 2549 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  A. k  e.  ( 0 ... ( N  -  j )
) A  e.  CC )
6 fsum0diag2.1 . . . . . . . . . 10  |-  ( x  =  k  ->  B  =  A )
76eleq1d 2246 . . . . . . . . 9  |-  ( x  =  k  ->  ( B  e.  CC  <->  A  e.  CC ) )
87cbvralv 2704 . . . . . . . 8  |-  ( A. x  e.  ( 0 ... ( N  -  j ) ) B  e.  CC  <->  A. k  e.  ( 0 ... ( N  -  j )
) A  e.  CC )
95, 8sylibr 134 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  A. x  e.  ( 0 ... ( N  -  j )
) B  e.  CC )
109adantrr 479 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  ->  A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC )
11 nfcsb1v 3091 . . . . . . . 8  |-  F/_ x [_ ( ( N  -  j )  -  n
)  /  x ]_ B
1211nfel1 2330 . . . . . . 7  |-  F/ x [_ ( ( N  -  j )  -  n
)  /  x ]_ B  e.  CC
13 csbeq1a 3067 . . . . . . . 8  |-  ( x  =  ( ( N  -  j )  -  n )  ->  B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
1413eleq1d 2246 . . . . . . 7  |-  ( x  =  ( ( N  -  j )  -  n )  ->  ( B  e.  CC  <->  [_ ( ( N  -  j )  -  n )  /  x ]_ B  e.  CC ) )
1512, 14rspc 2836 . . . . . 6  |-  ( ( ( N  -  j
)  -  n )  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ (
( N  -  j
)  -  n )  /  x ]_ B  e.  CC ) )
162, 10, 15sylc 62 . . . . 5  |-  ( (
ph  /\  ( j  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... ( N  -  j )
) ) )  ->  [_ ( ( N  -  j )  -  n
)  /  x ]_ B  e.  CC )
17 fisum0diag2.n . . . . 5  |-  ( ph  ->  N  e.  ZZ )
1816, 17fisum0diag 11449 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ n  e.  (
0 ... ( N  -  j ) ) [_ ( ( N  -  j )  -  n
)  /  x ]_ B  =  sum_ n  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... ( N  -  n ) )
[_ ( ( N  -  j )  -  n )  /  x ]_ B )
19 0zd 9265 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
2017adantr 276 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  N  e.  ZZ )
21 elfzelz 10025 . . . . . . . . 9  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ZZ )
2221adantl 277 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  j  e.  ZZ )
2320, 22zsubcld 9380 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  ( N  -  j )  e.  ZZ )
24 nfcsb1v 3091 . . . . . . . . . 10  |-  F/_ x [_ k  /  x ]_ B
2524nfel1 2330 . . . . . . . . 9  |-  F/ x [_ k  /  x ]_ B  e.  CC
26 csbeq1a 3067 . . . . . . . . . 10  |-  ( x  =  k  ->  B  =  [_ k  /  x ]_ B )
2726eleq1d 2246 . . . . . . . . 9  |-  ( x  =  k  ->  ( B  e.  CC  <->  [_ k  /  x ]_ B  e.  CC ) )
2825, 27rspc 2836 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ k  /  x ]_ B  e.  CC ) )
299, 28mpan9 281 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  k  e.  ( 0 ... ( N  -  j )
) )  ->  [_ k  /  x ]_ B  e.  CC )
30 csbeq1 3061 . . . . . . 7  |-  ( k  =  ( ( 0  +  ( N  -  j ) )  -  n )  ->  [_ k  /  x ]_ B  = 
[_ ( ( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B )
3119, 23, 29, 30fisumrev2 11454 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B
)
32 elfz3nn0 10115 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... N )  ->  N  e.  NN0 )
3332ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  N  e.  NN0 )
3421ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  j  e.  ZZ )
35 nn0cn 9186 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  CC )
36 zcn 9258 . . . . . . . . . . . 12  |-  ( j  e.  ZZ  ->  j  e.  CC )
37 subcl 8156 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  j  e.  CC )  ->  ( N  -  j
)  e.  CC )
3835, 36, 37syl2an 289 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  j  e.  ZZ )  ->  ( N  -  j
)  e.  CC )
3933, 34, 38syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  ( N  -  j )  e.  CC )
4039addid2d 8107 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  (
0  +  ( N  -  j ) )  =  ( N  -  j ) )
4140oveq1d 5890 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  (
( 0  +  ( N  -  j ) )  -  n )  =  ( ( N  -  j )  -  n ) )
4241csbeq1d 3065 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( 0 ... N
) )  /\  n  e.  ( 0 ... ( N  -  j )
) )  ->  [_ (
( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
4342sumeq2dv 11376 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ n  e.  ( 0 ... ( N  -  j )
) [_ ( ( 0  +  ( N  -  j ) )  -  n )  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
4431, 43eqtrd 2210 . . . . 5  |-  ( (
ph  /\  j  e.  ( 0 ... N
) )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
4544sumeq2dv 11376 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ j  e.  ( 0 ... N ) sum_ n  e.  ( 0 ... ( N  -  j
) ) [_ (
( N  -  j
)  -  n )  /  x ]_ B
)
46 elfz3nn0 10115 . . . . . . . . . 10  |-  ( n  e.  ( 0 ... N )  ->  N  e.  NN0 )
4746adantl 277 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  N  e.  NN0 )
48 addlid 8096 . . . . . . . . 9  |-  ( N  e.  CC  ->  (
0  +  N )  =  N )
4947, 35, 483syl 17 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
0  +  N )  =  N )
5049oveq1d 5890 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
( 0  +  N
)  -  n )  =  ( N  -  n ) )
5150oveq2d 5891 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
0 ... ( ( 0  +  N )  -  n ) )  =  ( 0 ... ( N  -  n )
) )
5250oveq1d 5890 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  n )  -  j ) )
5352adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  n )  -  j ) )
5446ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  N  e.  NN0 )
55 elfzelz 10025 . . . . . . . . . 10  |-  ( n  e.  ( 0 ... N )  ->  n  e.  ZZ )
5655ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  n  e.  ZZ )
57 elfzelz 10025 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... ( N  -  n
) )  ->  j  e.  ZZ )
5857adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  j  e.  ZZ )
59 zcn 9258 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  n  e.  CC )
60 sub32 8191 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  n  e.  CC  /\  j  e.  CC )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6135, 59, 36, 60syl3an 1280 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  n  e.  ZZ  /\  j  e.  ZZ )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6254, 56, 58, 61syl3anc 1238 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( N  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6353, 62eqtrd 2210 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  (
( ( 0  +  N )  -  n
)  -  j )  =  ( ( N  -  j )  -  n ) )
6463csbeq1d 3065 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... ( N  -  n )
) )  ->  [_ (
( ( 0  +  N )  -  n
)  -  j )  /  x ]_ B  =  [_ ( ( N  -  j )  -  n )  /  x ]_ B )
6551, 64sumeq12rdv 11381 . . . . 5  |-  ( (
ph  /\  n  e.  ( 0 ... N
) )  ->  sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... ( N  -  n ) ) [_ ( ( N  -  j )  -  n
)  /  x ]_ B )
6665sumeq2dv 11376 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
0 ... N ) sum_ j  e.  ( 0 ... ( ( 0  +  N )  -  n ) ) [_ ( ( ( 0  +  N )  -  n )  -  j
)  /  x ]_ B  =  sum_ n  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... ( N  -  n ) )
[_ ( ( N  -  j )  -  n )  /  x ]_ B )
6718, 45, 663eqtr4d 2220 . . 3  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ n  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B )
68 0zd 9265 . . . 4  |-  ( ph  ->  0  e.  ZZ )
69 0zd 9265 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
70 elfzelz 10025 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
7170adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
7269, 71fzfigd 10431 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
0 ... k )  e. 
Fin )
73 elfzuz3 10022 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... k )  ->  k  e.  ( ZZ>= `  j )
)
7473adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ( ZZ>= `  j )
)
75 elfzuz3 10022 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  k )
)
7675adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  N  e.  ( ZZ>= `  k )
)
7776adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  N  e.  ( ZZ>= `  k )
)
78 elfzuzb 10019 . . . . . . . . 9  |-  ( k  e.  ( j ... N )  <->  ( k  e.  ( ZZ>= `  j )  /\  N  e.  ( ZZ>=
`  k ) ) )
7974, 77, 78sylanbrc 417 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ( j ... N
) )
80 elfzelz 10025 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... k )  ->  j  e.  ZZ )
8180adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  ZZ )
8217ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  N  e.  ZZ )
8370ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  k  e.  ZZ )
84 fzsubel 10060 . . . . . . . . 9  |-  ( ( ( j  e.  ZZ  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( k  e.  ( j ... N )  <-> 
( k  -  j
)  e.  ( ( j  -  j ) ... ( N  -  j ) ) ) )
8581, 82, 83, 81, 84syl22anc 1239 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  e.  ( j ... N )  <->  ( k  -  j )  e.  ( ( j  -  j ) ... ( N  -  j )
) ) )
8679, 85mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  ( ( j  -  j ) ... ( N  -  j
) ) )
87 subid 8176 . . . . . . . . 9  |-  ( j  e.  CC  ->  (
j  -  j )  =  0 )
8881, 36, 873syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
j  -  j )  =  0 )
8988oveq1d 5890 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
( j  -  j
) ... ( N  -  j ) )  =  ( 0 ... ( N  -  j )
) )
9086, 89eleqtrd 2256 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  ( 0 ... ( N  -  j
) ) )
91 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  ph )
92 fzss2 10064 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  k
)  ->  ( 0 ... k )  C_  ( 0 ... N
) )
9376, 92syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
0 ... k )  C_  ( 0 ... N
) )
9493sselda 3156 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  j  e.  ( 0 ... N
) )
9591, 94, 9syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  A. x  e.  ( 0 ... ( N  -  j )
) B  e.  CC )
96 nfcsb1v 3091 . . . . . . . 8  |-  F/_ x [_ ( k  -  j
)  /  x ]_ B
9796nfel1 2330 . . . . . . 7  |-  F/ x [_ ( k  -  j
)  /  x ]_ B  e.  CC
98 csbeq1a 3067 . . . . . . . 8  |-  ( x  =  ( k  -  j )  ->  B  =  [_ ( k  -  j )  /  x ]_ B )
9998eleq1d 2246 . . . . . . 7  |-  ( x  =  ( k  -  j )  ->  ( B  e.  CC  <->  [_ ( k  -  j )  /  x ]_ B  e.  CC ) )
10097, 99rspc 2836 . . . . . 6  |-  ( ( k  -  j )  e.  ( 0 ... ( N  -  j
) )  ->  ( A. x  e.  (
0 ... ( N  -  j ) ) B  e.  CC  ->  [_ (
k  -  j )  /  x ]_ B  e.  CC ) )
10190, 95, 100sylc 62 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  j  e.  ( 0 ... k
) )  ->  [_ (
k  -  j )  /  x ]_ B  e.  CC )
10272, 101fsumcl 11408 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  e.  CC )
103 oveq2 5883 . . . . 5  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  (
0 ... k )  =  ( 0 ... (
( 0  +  N
)  -  n ) ) )
104 oveq1 5882 . . . . . . 7  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  (
k  -  j )  =  ( ( ( 0  +  N )  -  n )  -  j ) )
105104csbeq1d 3065 . . . . . 6  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  [_ (
k  -  j )  /  x ]_ B  =  [_ ( ( ( 0  +  N )  -  n )  -  j )  /  x ]_ B )
106105adantr 276 . . . . 5  |-  ( ( k  =  ( ( 0  +  N )  -  n )  /\  j  e.  ( 0 ... k ) )  ->  [_ ( k  -  j )  /  x ]_ B  =  [_ (
( ( 0  +  N )  -  n
)  -  j )  /  x ]_ B
)
107103, 106sumeq12dv 11380 . . . 4  |-  ( k  =  ( ( 0  +  N )  -  n )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... ( ( 0  +  N )  -  n ) ) [_ ( ( ( 0  +  N )  -  n )  -  j
)  /  x ]_ B )
10868, 17, 102, 107fisumrev2 11454 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N )
sum_ j  e.  ( 0 ... k )
[_ ( k  -  j )  /  x ]_ B  =  sum_ n  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... (
( 0  +  N
)  -  n ) ) [_ ( ( ( 0  +  N
)  -  n )  -  j )  /  x ]_ B )
10967, 108eqtr4d 2213 . 2  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ k  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... k ) [_ ( k  -  j
)  /  x ]_ B )
110 vex 2741 . . . . . 6  |-  k  e. 
_V
111110, 6csbie 3103 . . . . 5  |-  [_ k  /  x ]_ B  =  A
112111a1i 9 . . . 4  |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  ( 0 ... ( N  -  j ) ) )  ->  [_ k  /  x ]_ B  =  A
)
113112sumeq2dv 11376 . . 3  |-  ( j  e.  ( 0 ... N )  ->  sum_ k  e.  ( 0 ... ( N  -  j )
) [_ k  /  x ]_ B  =  sum_ k  e.  ( 0 ... ( N  -  j ) ) A )
114113sumeq2i 11372 . 2  |-  sum_ j  e.  ( 0 ... N
) sum_ k  e.  ( 0 ... ( N  -  j ) )
[_ k  /  x ]_ B  =  sum_ j  e.  ( 0 ... N ) sum_ k  e.  ( 0 ... ( N  -  j ) ) A
11570adantr 276 . . . . . 6  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  k  e.  ZZ )
11680adantl 277 . . . . . 6  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  j  e.  ZZ )
117115, 116zsubcld 9380 . . . . 5  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  ( k  -  j )  e.  ZZ )
118 fsum0diag2.2 . . . . . 6  |-  ( x  =  ( k  -  j )  ->  B  =  C )
119118adantl 277 . . . . 5  |-  ( ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  /\  x  =  ( k  -  j
) )  ->  B  =  C )
120117, 119csbied 3104 . . . 4  |-  ( ( k  e.  ( 0 ... N )  /\  j  e.  ( 0 ... k ) )  ->  [_ ( k  -  j )  /  x ]_ B  =  C
)
121120sumeq2dv 11376 . . 3  |-  ( k  e.  ( 0 ... N )  ->  sum_ j  e.  ( 0 ... k
) [_ ( k  -  j )  /  x ]_ B  =  sum_ j  e.  ( 0 ... k ) C )
122121sumeq2i 11372 . 2  |-  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k )
[_ ( k  -  j )  /  x ]_ B  =  sum_ k  e.  ( 0 ... N ) sum_ j  e.  ( 0 ... k ) C
123109, 114, 1223eqtr3g 2233 1  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N )
sum_ k  e.  ( 0 ... ( N  -  j ) ) A  =  sum_ k  e.  ( 0 ... N
) sum_ j  e.  ( 0 ... k ) C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   [_csb 3058    C_ wss 3130   ` cfv 5217  (class class class)co 5875   CCcc 7809   0cc0 7811    + caddc 7814    - cmin 8128   NN0cn0 9176   ZZcz 9253   ZZ>=cuz 9528   ...cfz 10008   sum_csu 11361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-disj 3982  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362
This theorem is referenced by:  mertensabs  11545
  Copyright terms: Public domain W3C validator