ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbief Unicode version

Theorem csbief 3093
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbief.1  |-  A  e. 
_V
csbief.2  |-  F/_ x C
csbief.3  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
csbief  |-  [_ A  /  x ]_ B  =  C
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem csbief
StepHypRef Expression
1 csbief.1 . 2  |-  A  e. 
_V
2 csbief.2 . . . 4  |-  F/_ x C
32a1i 9 . . 3  |-  ( A  e.  _V  ->  F/_ x C )
4 csbief.3 . . 3  |-  ( x  =  A  ->  B  =  C )
53, 4csbiegf 3092 . 2  |-  ( A  e.  _V  ->  [_ A  /  x ]_ B  =  C )
61, 5ax-mp 5 1  |-  [_ A  /  x ]_ B  =  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   F/_wnfc 2299   _Vcvv 2730   [_csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  csbie  3094  csbing  3334  csbopabg  4067  pofun  4297  csbima12g  4972  csbiotag  5191  csbriotag  5821  csbov123g  5891  eqerlem  6544  zsumdc  11347
  Copyright terms: Public domain W3C validator