ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcnv Unicode version

Theorem fsumcnv 11174
Description: Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsumcnv.1  |-  ( x  =  <. j ,  k
>.  ->  B  =  D )
fsumcnv.2  |-  ( y  =  <. k ,  j
>.  ->  C  =  D )
fsumcnv.3  |-  ( ph  ->  A  e.  Fin )
fsumcnv.4  |-  ( ph  ->  Rel  A )
fsumcnv.5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsumcnv  |-  ( ph  -> 
sum_ x  e.  A  B  =  sum_ y  e.  `'  A C )
Distinct variable groups:    x, y, A   
j, k, y, B   
x, j, C, k    ph, x, y    x, D, y
Allowed substitution hints:    ph( j, k)    A( j, k)    B( x)    C( y)    D( j, k)

Proof of Theorem fsumcnv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 2983 . . . 4  |-  ( x  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.  ->  B  =  [_ <. ( 2nd `  y
) ,  ( 1st `  y ) >.  /  x ]_ B )
2 2ndexg 6034 . . . . . 6  |-  ( y  e.  _V  ->  ( 2nd `  y )  e. 
_V )
32elv 2664 . . . . 5  |-  ( 2nd `  y )  e.  _V
4 1stexg 6033 . . . . . 6  |-  ( y  e.  _V  ->  ( 1st `  y )  e. 
_V )
54elv 2664 . . . . 5  |-  ( 1st `  y )  e.  _V
6 vex 2663 . . . . . . . 8  |-  j  e. 
_V
7 vex 2663 . . . . . . . 8  |-  k  e. 
_V
86, 7opex 4121 . . . . . . 7  |-  <. j ,  k >.  e.  _V
9 fsumcnv.1 . . . . . . 7  |-  ( x  =  <. j ,  k
>.  ->  B  =  D )
108, 9csbie 3015 . . . . . 6  |-  [_ <. j ,  k >.  /  x ]_ B  =  D
11 opeq12 3677 . . . . . . 7  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  <. j ,  k >.  =  <. ( 2nd `  y ) ,  ( 1st `  y
) >. )
1211csbeq1d 2981 . . . . . 6  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  [_ <. j ,  k >.  /  x ]_ B  =  [_ <. ( 2nd `  y ) ,  ( 1st `  y
) >.  /  x ]_ B )
1310, 12syl5eqr 2164 . . . . 5  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  D  =  [_ <. ( 2nd `  y
) ,  ( 1st `  y ) >.  /  x ]_ B )
143, 5, 13csbie2 3019 . . . 4  |-  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  k ]_ D  =  [_ <. ( 2nd `  y ) ,  ( 1st `  y
) >.  /  x ]_ B
151, 14syl6eqr 2168 . . 3  |-  ( x  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.  ->  B  =  [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
16 fsumcnv.4 . . . 4  |-  ( ph  ->  Rel  A )
17 fsumcnv.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
18 relcnvfi 6797 . . . 4  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )
1916, 17, 18syl2anc 408 . . 3  |-  ( ph  ->  `' A  e.  Fin )
20 relcnv 4887 . . . . 5  |-  Rel  `' A
21 cnvf1o 6090 . . . . 5  |-  ( Rel  `' A  ->  ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A )
2220, 21ax-mp 5 . . . 4  |-  ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A
23 dfrel2 4959 . . . . . 6  |-  ( Rel 
A  <->  `' `' A  =  A
)
2416, 23sylib 121 . . . . 5  |-  ( ph  ->  `' `' A  =  A
)
25 f1oeq3 5328 . . . . 5  |-  ( `' `' A  =  A  ->  ( ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A 
<->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A ) )
2624, 25syl 14 . . . 4  |-  ( ph  ->  ( ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A 
<->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A ) )
2722, 26mpbii 147 . . 3  |-  ( ph  ->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A )
28 1st2nd 6047 . . . . . . 7  |-  ( ( Rel  `' A  /\  y  e.  `' A
)  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
2920, 28mpan 420 . . . . . 6  |-  ( y  e.  `' A  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
3029fveq2d 5393 . . . . 5  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 y )  =  ( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
)
31 id 19 . . . . . . 7  |-  ( y  e.  `' A  -> 
y  e.  `' A
)
3229, 31eqeltrrd 2195 . . . . . 6  |-  ( y  e.  `' A  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A )
33 sneq 3508 . . . . . . . . . 10  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  { z }  =  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. } )
3433cnveqd 4685 . . . . . . . . 9  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  `' { z }  =  `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
3534unieqd 3717 . . . . . . . 8  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  U. `' { z }  =  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
36 opswapg 4995 . . . . . . . . 9  |-  ( ( ( 1st `  y
)  e.  _V  /\  ( 2nd `  y )  e.  _V )  ->  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
375, 3, 36mp2an 422 . . . . . . . 8  |-  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.
3835, 37syl6eq 2166 . . . . . . 7  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  U. `' { z }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
39 eqid 2117 . . . . . . 7  |-  ( z  e.  `' A  |->  U. `' { z } )  =  ( z  e.  `' A  |->  U. `' { z } )
403, 5opex 4121 . . . . . . 7  |-  <. ( 2nd `  y ) ,  ( 1st `  y
) >.  e.  _V
4138, 39, 40fvmpt 5466 . . . . . 6  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A  ->  ( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4232, 41syl 14 . . . . 5  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4330, 42eqtrd 2150 . . . 4  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 y )  = 
<. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4443adantl 275 . . 3  |-  ( (
ph  /\  y  e.  `' A )  ->  (
( z  e.  `' A  |->  U. `' { z } ) `  y
)  =  <. ( 2nd `  y ) ,  ( 1st `  y
) >. )
45 fsumcnv.5 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4615, 19, 27, 44, 45fsumf1o 11127 . 2  |-  ( ph  -> 
sum_ x  e.  A  B  =  sum_ y  e.  `'  A [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
47 csbeq1a 2983 . . . . 5  |-  ( y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  C  =  [_ <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /  y ]_ C )
4829, 47syl 14 . . . 4  |-  ( y  e.  `' A  ->  C  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C )
497, 6opex 4121 . . . . . . 7  |-  <. k ,  j >.  e.  _V
50 fsumcnv.2 . . . . . . 7  |-  ( y  =  <. k ,  j
>.  ->  C  =  D )
5149, 50csbie 3015 . . . . . 6  |-  [_ <. k ,  j >.  /  y ]_ C  =  D
52 opeq12 3677 . . . . . . . 8  |-  ( ( k  =  ( 1st `  y )  /\  j  =  ( 2nd `  y
) )  ->  <. k ,  j >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
5352ancoms 266 . . . . . . 7  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  <. k ,  j >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
5453csbeq1d 2981 . . . . . 6  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  [_ <. k ,  j >.  /  y ]_ C  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C )
5551, 54syl5eqr 2164 . . . . 5  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  D  =  [_ <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /  y ]_ C )
563, 5, 55csbie2 3019 . . . 4  |-  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  k ]_ D  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C
5748, 56syl6eqr 2168 . . 3  |-  ( y  e.  `' A  ->  C  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
5857sumeq2i 11101 . 2  |-  sum_ y  e.  `'  A C  =  sum_ y  e.  `'  A [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D
5946, 58syl6eqr 2168 1  |-  ( ph  -> 
sum_ x  e.  A  B  =  sum_ y  e.  `'  A C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316    e. wcel 1465   _Vcvv 2660   [_csb 2975   {csn 3497   <.cop 3500   U.cuni 3706    |-> cmpt 3959   `'ccnv 4508   Rel wrel 4514   -1-1-onto->wf1o 5092   ` cfv 5093   1stc1st 6004   2ndc2nd 6005   Fincfn 6602   CCcc 7586   sum_csu 11090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-isom 5102  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-frec 6256  df-1o 6281  df-oadd 6285  df-er 6397  df-en 6603  df-dom 6604  df-fin 6605  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-rp 9410  df-fz 9759  df-fzo 9888  df-seqfrec 10187  df-exp 10261  df-ihash 10490  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739  df-clim 11016  df-sumdc 11091
This theorem is referenced by:  fisumcom2  11175
  Copyright terms: Public domain W3C validator