ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcnv Unicode version

Theorem fsumcnv 11238
Description: Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsumcnv.1  |-  ( x  =  <. j ,  k
>.  ->  B  =  D )
fsumcnv.2  |-  ( y  =  <. k ,  j
>.  ->  C  =  D )
fsumcnv.3  |-  ( ph  ->  A  e.  Fin )
fsumcnv.4  |-  ( ph  ->  Rel  A )
fsumcnv.5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsumcnv  |-  ( ph  -> 
sum_ x  e.  A  B  =  sum_ y  e.  `'  A C )
Distinct variable groups:    x, y, A   
j, k, y, B   
x, j, C, k    ph, x, y    x, D, y
Allowed substitution hints:    ph( j, k)    A( j, k)    B( x)    C( y)    D( j, k)

Proof of Theorem fsumcnv
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3016 . . . 4  |-  ( x  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.  ->  B  =  [_ <. ( 2nd `  y
) ,  ( 1st `  y ) >.  /  x ]_ B )
2 2ndexg 6074 . . . . . 6  |-  ( y  e.  _V  ->  ( 2nd `  y )  e. 
_V )
32elv 2693 . . . . 5  |-  ( 2nd `  y )  e.  _V
4 1stexg 6073 . . . . . 6  |-  ( y  e.  _V  ->  ( 1st `  y )  e. 
_V )
54elv 2693 . . . . 5  |-  ( 1st `  y )  e.  _V
6 vex 2692 . . . . . . . 8  |-  j  e. 
_V
7 vex 2692 . . . . . . . 8  |-  k  e. 
_V
86, 7opex 4159 . . . . . . 7  |-  <. j ,  k >.  e.  _V
9 fsumcnv.1 . . . . . . 7  |-  ( x  =  <. j ,  k
>.  ->  B  =  D )
108, 9csbie 3050 . . . . . 6  |-  [_ <. j ,  k >.  /  x ]_ B  =  D
11 opeq12 3715 . . . . . . 7  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  <. j ,  k >.  =  <. ( 2nd `  y ) ,  ( 1st `  y
) >. )
1211csbeq1d 3014 . . . . . 6  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  [_ <. j ,  k >.  /  x ]_ B  =  [_ <. ( 2nd `  y ) ,  ( 1st `  y
) >.  /  x ]_ B )
1310, 12syl5eqr 2187 . . . . 5  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  D  =  [_ <. ( 2nd `  y
) ,  ( 1st `  y ) >.  /  x ]_ B )
143, 5, 13csbie2 3054 . . . 4  |-  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  k ]_ D  =  [_ <. ( 2nd `  y ) ,  ( 1st `  y
) >.  /  x ]_ B
151, 14eqtr4di 2191 . . 3  |-  ( x  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.  ->  B  =  [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
16 fsumcnv.4 . . . 4  |-  ( ph  ->  Rel  A )
17 fsumcnv.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
18 relcnvfi 6837 . . . 4  |-  ( ( Rel  A  /\  A  e.  Fin )  ->  `' A  e.  Fin )
1916, 17, 18syl2anc 409 . . 3  |-  ( ph  ->  `' A  e.  Fin )
20 relcnv 4925 . . . . 5  |-  Rel  `' A
21 cnvf1o 6130 . . . . 5  |-  ( Rel  `' A  ->  ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A )
2220, 21ax-mp 5 . . . 4  |-  ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A
23 dfrel2 4997 . . . . . 6  |-  ( Rel 
A  <->  `' `' A  =  A
)
2416, 23sylib 121 . . . . 5  |-  ( ph  ->  `' `' A  =  A
)
25 f1oeq3 5366 . . . . 5  |-  ( `' `' A  =  A  ->  ( ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A 
<->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A ) )
2624, 25syl 14 . . . 4  |-  ( ph  ->  ( ( z  e.  `' A  |->  U. `' { z } ) : `' A -1-1-onto-> `' `' A 
<->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A ) )
2722, 26mpbii 147 . . 3  |-  ( ph  ->  ( z  e.  `' A  |->  U. `' { z } ) : `' A
-1-1-onto-> A )
28 1st2nd 6087 . . . . . . 7  |-  ( ( Rel  `' A  /\  y  e.  `' A
)  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
2920, 28mpan 421 . . . . . 6  |-  ( y  e.  `' A  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
3029fveq2d 5433 . . . . 5  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 y )  =  ( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
)
31 id 19 . . . . . . 7  |-  ( y  e.  `' A  -> 
y  e.  `' A
)
3229, 31eqeltrrd 2218 . . . . . 6  |-  ( y  e.  `' A  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A )
33 sneq 3543 . . . . . . . . . 10  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  { z }  =  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. } )
3433cnveqd 4723 . . . . . . . . 9  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  `' { z }  =  `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
3534unieqd 3755 . . . . . . . 8  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  U. `' { z }  =  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
36 opswapg 5033 . . . . . . . . 9  |-  ( ( ( 1st `  y
)  e.  _V  /\  ( 2nd `  y )  e.  _V )  ->  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
375, 3, 36mp2an 423 . . . . . . . 8  |-  U. `' { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >.
3835, 37eqtrdi 2189 . . . . . . 7  |-  ( z  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  U. `' { z }  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
39 eqid 2140 . . . . . . 7  |-  ( z  e.  `' A  |->  U. `' { z } )  =  ( z  e.  `' A  |->  U. `' { z } )
403, 5opex 4159 . . . . . . 7  |-  <. ( 2nd `  y ) ,  ( 1st `  y
) >.  e.  _V
4138, 39, 40fvmpt 5506 . . . . . 6  |-  ( <.
( 1st `  y
) ,  ( 2nd `  y ) >.  e.  `' A  ->  ( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4232, 41syl 14 . . . . 5  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 <. ( 1st `  y
) ,  ( 2nd `  y ) >. )  =  <. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4330, 42eqtrd 2173 . . . 4  |-  ( y  e.  `' A  -> 
( ( z  e.  `' A  |->  U. `' { z } ) `
 y )  = 
<. ( 2nd `  y
) ,  ( 1st `  y ) >. )
4443adantl 275 . . 3  |-  ( (
ph  /\  y  e.  `' A )  ->  (
( z  e.  `' A  |->  U. `' { z } ) `  y
)  =  <. ( 2nd `  y ) ,  ( 1st `  y
) >. )
45 fsumcnv.5 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
4615, 19, 27, 44, 45fsumf1o 11191 . 2  |-  ( ph  -> 
sum_ x  e.  A  B  =  sum_ y  e.  `'  A [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
47 csbeq1a 3016 . . . . 5  |-  ( y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  ->  C  =  [_ <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /  y ]_ C )
4829, 47syl 14 . . . 4  |-  ( y  e.  `' A  ->  C  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C )
497, 6opex 4159 . . . . . . 7  |-  <. k ,  j >.  e.  _V
50 fsumcnv.2 . . . . . . 7  |-  ( y  =  <. k ,  j
>.  ->  C  =  D )
5149, 50csbie 3050 . . . . . 6  |-  [_ <. k ,  j >.  /  y ]_ C  =  D
52 opeq12 3715 . . . . . . . 8  |-  ( ( k  =  ( 1st `  y )  /\  j  =  ( 2nd `  y
) )  ->  <. k ,  j >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
5352ancoms 266 . . . . . . 7  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  <. k ,  j >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
5453csbeq1d 3014 . . . . . 6  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  [_ <. k ,  j >.  /  y ]_ C  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C )
5551, 54syl5eqr 2187 . . . . 5  |-  ( ( j  =  ( 2nd `  y )  /\  k  =  ( 1st `  y
) )  ->  D  =  [_ <. ( 1st `  y
) ,  ( 2nd `  y ) >.  /  y ]_ C )
563, 5, 55csbie2 3054 . . . 4  |-  [_ ( 2nd `  y )  / 
j ]_ [_ ( 1st `  y )  /  k ]_ D  =  [_ <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /  y ]_ C
5748, 56eqtr4di 2191 . . 3  |-  ( y  e.  `' A  ->  C  =  [_ ( 2nd `  y )  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D )
5857sumeq2i 11165 . 2  |-  sum_ y  e.  `'  A C  =  sum_ y  e.  `'  A [_ ( 2nd `  y
)  /  j ]_ [_ ( 1st `  y
)  /  k ]_ D
5946, 58eqtr4di 2191 1  |-  ( ph  -> 
sum_ x  e.  A  B  =  sum_ y  e.  `'  A C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   _Vcvv 2689   [_csb 3007   {csn 3532   <.cop 3535   U.cuni 3744    |-> cmpt 3997   `'ccnv 4546   Rel wrel 4552   -1-1-onto->wf1o 5130   ` cfv 5131   1stc1st 6044   2ndc2nd 6045   Fincfn 6642   CCcc 7642   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  fisumcom2  11239
  Copyright terms: Public domain W3C validator