| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbied | Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbied.1 |
|
| csbied.2 |
|
| Ref | Expression |
|---|---|
| csbied |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. 2
| |
| 2 | nfcvd 2351 |
. 2
| |
| 3 | csbied.1 |
. 2
| |
| 4 | csbied.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | csbiedf 3142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-sbc 3006 df-csb 3102 |
| This theorem is referenced by: csbied2 3149 rspc2vd 3170 fvmptd 5683 seq3f1olemp 10697 fsumgcl 11812 fsum3 11813 fsumshftm 11871 fisum0diag2 11873 fprodseq 12009 fprodeq0 12043 imasival 13253 mulgfvalg 13572 znval 14513 psrval 14543 mplvalcoe 14567 fsumdvdsmul 15578 |
| Copyright terms: Public domain | W3C validator |