| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbied | Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbied.1 |
|
| csbied.2 |
|
| Ref | Expression |
|---|---|
| csbied |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. 2
| |
| 2 | nfcvd 2340 |
. 2
| |
| 3 | csbied.1 |
. 2
| |
| 4 | csbied.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | csbiedf 3125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-csb 3085 |
| This theorem is referenced by: csbied2 3132 rspc2vd 3153 fvmptd 5645 seq3f1olemp 10626 fsumgcl 11570 fsum3 11571 fsumshftm 11629 fisum0diag2 11631 fprodseq 11767 fprodeq0 11801 imasival 13010 mulgfvalg 13329 znval 14270 psrval 14300 mplvalcoe 14324 fsumdvdsmul 15335 |
| Copyright terms: Public domain | W3C validator |