| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbied | Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| csbied.1 |
|
| csbied.2 |
|
| Ref | Expression |
|---|---|
| csbied |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. 2
| |
| 2 | nfcvd 2349 |
. 2
| |
| 3 | csbied.1 |
. 2
| |
| 4 | csbied.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | csbiedf 3134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-sbc 2999 df-csb 3094 |
| This theorem is referenced by: csbied2 3141 rspc2vd 3162 fvmptd 5660 seq3f1olemp 10660 fsumgcl 11697 fsum3 11698 fsumshftm 11756 fisum0diag2 11758 fprodseq 11894 fprodeq0 11928 imasival 13138 mulgfvalg 13457 znval 14398 psrval 14428 mplvalcoe 14452 fsumdvdsmul 15463 |
| Copyright terms: Public domain | W3C validator |