Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbied | Unicode version |
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbied.1 | |
csbied.2 |
Ref | Expression |
---|---|
csbied |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 | |
2 | nfcvd 2313 | . 2 | |
3 | csbied.1 | . 2 | |
4 | csbied.2 | . 2 | |
5 | 1, 2, 3, 4 | csbiedf 3089 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: csbied2 3096 rspc2vd 3117 fvmptd 5575 seq3f1olemp 10445 fsumgcl 11336 fsum3 11337 fsumshftm 11395 fisum0diag2 11397 fprodseq 11533 fprodeq0 11567 |
Copyright terms: Public domain | W3C validator |