| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > csbied | Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| csbied.1 | 
 | 
| csbied.2 | 
 | 
| Ref | Expression | 
|---|---|
| csbied | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | 
. 2
 | |
| 2 | nfcvd 2340 | 
. 2
 | |
| 3 | csbied.1 | 
. 2
 | |
| 4 | csbied.2 | 
. 2
 | |
| 5 | 1, 2, 3, 4 | csbiedf 3125 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-csb 3085 | 
| This theorem is referenced by: csbied2 3132 rspc2vd 3153 fvmptd 5642 seq3f1olemp 10607 fsumgcl 11551 fsum3 11552 fsumshftm 11610 fisum0diag2 11612 fprodseq 11748 fprodeq0 11782 imasival 12949 mulgfvalg 13251 znval 14192 psrval 14220 fsumdvdsmul 15227 | 
| Copyright terms: Public domain | W3C validator |