ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbied Unicode version

Theorem csbied 3041
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbied.1  |-  ( ph  ->  A  e.  V )
csbied.2  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
Assertion
Ref Expression
csbied  |-  ( ph  ->  [_ A  /  x ]_ B  =  C
)
Distinct variable groups:    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem csbied
StepHypRef Expression
1 nfv 1508 . 2  |-  F/ x ph
2 nfcvd 2280 . 2  |-  ( ph  -> 
F/_ x C )
3 csbied.1 . 2  |-  ( ph  ->  A  e.  V )
4 csbied.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
51, 2, 3, 4csbiedf 3035 1  |-  ( ph  ->  [_ A  /  x ]_ B  =  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   [_csb 2998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-sbc 2905  df-csb 2999
This theorem is referenced by:  csbied2  3042  fvmptd  5495  seq3f1olemp  10268  fsumgcl  11148  fsum3  11149  fsumshftm  11207  fisum0diag2  11209
  Copyright terms: Public domain W3C validator