ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbie2 Unicode version

Theorem csbie2 3098
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.)
Hypotheses
Ref Expression
csbie2t.1  |-  A  e. 
_V
csbie2t.2  |-  B  e. 
_V
csbie2.3  |-  ( ( x  =  A  /\  y  =  B )  ->  C  =  D )
Assertion
Ref Expression
csbie2  |-  [_ A  /  x ]_ [_ B  /  y ]_ C  =  D
Distinct variable groups:    x, y, A   
x, B, y    x, D, y
Allowed substitution hints:    C( x, y)

Proof of Theorem csbie2
StepHypRef Expression
1 csbie2.3 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  C  =  D )
21gen2 1443 . 2  |-  A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )
3 csbie2t.1 . . 3  |-  A  e. 
_V
4 csbie2t.2 . . 3  |-  B  e. 
_V
53, 4csbie2t 3097 . 2  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  D
)
62, 5ax-mp 5 1  |-  [_ A  /  x ]_ [_ B  /  y ]_ C  =  D
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346    = wceq 1348    e. wcel 2141   _Vcvv 2730   [_csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  fsumcnv  11400  fprodcnv  11588
  Copyright terms: Public domain W3C validator