Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbie2g | Unicode version |
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 2985 avoids a disjointness condition on and by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
csbie2g.1 | |
csbie2g.2 |
Ref | Expression |
---|---|
csbie2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3046 | . 2 | |
2 | csbie2g.1 | . . . . 5 | |
3 | 2 | eleq2d 2236 | . . . 4 |
4 | csbie2g.2 | . . . . 5 | |
5 | 4 | eleq2d 2236 | . . . 4 |
6 | 3, 5 | sbcie2g 2984 | . . 3 |
7 | 6 | abbi1dv 2286 | . 2 |
8 | 1, 7 | syl5eq 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 cab 2151 wsbc 2951 csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |