ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbie2g Unicode version

Theorem csbie2g 3016
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 2911 avoids a disjointness condition on  x and  A by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.)
Hypotheses
Ref Expression
csbie2g.1  |-  ( x  =  y  ->  B  =  C )
csbie2g.2  |-  ( y  =  A  ->  C  =  D )
Assertion
Ref Expression
csbie2g  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  D )
Distinct variable groups:    x, y    y, A    y, B    x, C    y, D
Allowed substitution hints:    A( x)    B( x)    C( y)    D( x)    V( x, y)

Proof of Theorem csbie2g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-csb 2972 . 2  |-  [_ A  /  x ]_ B  =  { z  |  [. A  /  x ]. z  e.  B }
2 csbie2g.1 . . . . 5  |-  ( x  =  y  ->  B  =  C )
32eleq2d 2184 . . . 4  |-  ( x  =  y  ->  (
z  e.  B  <->  z  e.  C ) )
4 csbie2g.2 . . . . 5  |-  ( y  =  A  ->  C  =  D )
54eleq2d 2184 . . . 4  |-  ( y  =  A  ->  (
z  e.  C  <->  z  e.  D ) )
63, 5sbcie2g 2910 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  B  <->  z  e.  D ) )
76abbi1dv 2234 . 2  |-  ( A  e.  V  ->  { z  |  [. A  /  x ]. z  e.  B }  =  D )
81, 7syl5eq 2159 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463   {cab 2101   [.wsbc 2878   [_csb 2971
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-sbc 2879  df-csb 2972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator