| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > csbie2 | GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.) | 
| Ref | Expression | 
|---|---|
| csbie2t.1 | ⊢ 𝐴 ∈ V | 
| csbie2t.2 | ⊢ 𝐵 ∈ V | 
| csbie2.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | 
| Ref | Expression | 
|---|---|
| csbie2 | ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | csbie2.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | |
| 2 | 1 | gen2 1464 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | 
| 3 | csbie2t.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | csbie2t.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 3, 4 | csbie2t 3133 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) | 
| 6 | 2, 5 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⦋csb 3084 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-csb 3085 | 
| This theorem is referenced by: fsumcnv 11602 fprodcnv 11790 dfrhm2 13710 | 
| Copyright terms: Public domain | W3C validator |