ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbie2t Unicode version

Theorem csbie2t 3097
Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3098). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbie2t.1  |-  A  e. 
_V
csbie2t.2  |-  B  e. 
_V
Assertion
Ref Expression
csbie2t  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  D
)
Distinct variable groups:    x, y, A   
x, B, y    x, D, y
Allowed substitution hints:    C( x, y)

Proof of Theorem csbie2t
StepHypRef Expression
1 nfa1 1534 . 2  |-  F/ x A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )
2 nfcvd 2313 . 2  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  F/_ x D )
3 csbie2t.1 . . 3  |-  A  e. 
_V
43a1i 9 . 2  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  A  e.  _V )
5 nfa2 1572 . . . 4  |-  F/ y A. x A. y
( ( x  =  A  /\  y  =  B )  ->  C  =  D )
6 nfv 1521 . . . 4  |-  F/ y  x  =  A
75, 6nfan 1558 . . 3  |-  F/ y ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  /\  x  =  A )
8 nfcvd 2313 . . 3  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  C  =  D )  /\  x  =  A )  ->  F/_ y D )
9 csbie2t.2 . . . 4  |-  B  e. 
_V
109a1i 9 . . 3  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  C  =  D )  /\  x  =  A )  ->  B  e.  _V )
11 sp 1504 . . . . 5  |-  ( A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  (
( x  =  A  /\  y  =  B )  ->  C  =  D ) )
1211sps 1530 . . . 4  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  ( ( x  =  A  /\  y  =  B )  ->  C  =  D ) )
1312impl 378 . . 3  |-  ( ( ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  /\  x  =  A )  /\  y  =  B )  ->  C  =  D )
147, 8, 10, 13csbiedf 3089 . 2  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  C  =  D )  /\  x  =  A )  ->  [_ B  /  y ]_ C  =  D )
151, 2, 4, 14csbiedf 3089 1  |-  ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  C  =  D )  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  D
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346    = wceq 1348    e. wcel 2141   _Vcvv 2730   [_csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  csbie2  3098
  Copyright terms: Public domain W3C validator